Three-dimensional biofilm electrode reactors (3D-BERs) represent a novel technology for wastewater denitrification. Formation of mature electroactive biofilm on particle electrodes is crucial to realize successful denitrification in 3D-BERs. However, long start-up time and low electroactivity of the biofilm formed on particle electrodes limit the further application of 3D-BERs in wastewater treatment. In this work, self-assembled hybrid biofilms (SAHB) was cultivated on granular activate carbon particle electrodes of the 3D-BER by assembling nano ɑ-FeO into the biofilm. ɑ-FeO was selected due to its high affinity to bacterial outer-membrane cytochromes, an important mediator for microbial electron transfer. SAHB formed on particle electrodes were characterized and the denitrification performance of 3D-BERs was also investigated. Results indicate that nano ɑ-FeO plays positive roles in the start-up of 3D-BER, which captures more microbes into SAHB and constructs thick biofilm on particle electrodes. Special microorganisms with denitrification function related with genera of Hydrogenophaga and Opitutus are distinctively enriched in SAHB. Nano ɑ-FeO induced SAHB exhibit superior denitrification performance compared to natural biofilm. The average denitrification rate increases from 0.62 mg total nitrogen/L/h for natural biofilm to 1.73 mg total nitrogen/L/h for SAHB, mainly ascribed to accelerated nitrites reduction. Our work provides new technical solution to enhance nitrates removal in 3D-BERs and brings deep insights into application of bio-electrochemical system in wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2019.01.060 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China.
The NASICON-type NaV(PO) (NVP) is recognized as a potential cathode material for Na-ion batteries (SIBs). Nevertheless, its inherent small electronic conductivity induces limited cycling stability and rate performance. Carbon coating, particularly N-doped carbon, has been identified as an effective strategy to address these challenges.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.
The electrochemical CO reduction reaction (CORR) holds enormous potential as a carbon-neutral route to the sustainable production of fuels and platform chemicals. The durability for long-term operation is currently inadequate for commercialization, however, and the underlying deactivation process remains elusive. A fundamental understanding of the degradation mechanism of electrocatalysts, which can dictate the overall device performance, is needed.
View Article and Find Full Text PDFHeliyon
January 2025
Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, 91125, USA.
Electrochemical energy storage plays a critical role in the transition to clean energy. With the growing demand for efficient and sustainable energy solutions, supercapacitors have gained significant attention due to their high specific capacitance, rapid charge/discharge capabilities, long lifespan, safe operation across various temperatures, and minimal maintenance needs. This study introduces a novel approach for the synthesis of high-performance supercapacitor electrodes by using MnNi-MOF-74 as a precursor.
View Article and Find Full Text PDFSmall
January 2025
School of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
Seawater batteries (SWBs) have emerged as a next-generation battery technology that does not rely on lithium, a limited resource essential for lithium-ion batteries. Instead, SWBs utilize abundant sodium from seawater, offering a sustainable alternative to conventional battery technologies. Previous studies have demonstrated the feasibility of achieving high energy densities in SWB anodes using vertically aligned electrodes.
View Article and Find Full Text PDFMethodsX
June 2025
Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.
Construction and experimental validation of electrochemical cells with multiple electrodes in a microfluidic channel is described. Details of the fabrication of the electrodes and polydimethylsiloxane channel using soft lithography methods are given. Calibration of the collection efficiencies and transit times between electrodes validate the use of these cells for fast electrochemical detection of soluble species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!