Oxidative stress (OS) is associated with retinal aging and age-related macular degeneration (AMD). In both cases there are reports for the presence of markers of lipid peroxidation in retinal cells. We investigated if nitrosative stress also occurs in the human retina with aging. We examined the cellular localization of nitro-tyrosine, a biomarker of protein tyrosine nitration, in human donor retina (17-91 years; N = 15) by immunohistochemistry. Immunoreactivity (IR) to nitro-tyrosine was present in ten retinas and absent in five retinas. It was predominant in photoreceptor inner segments, cell bodies and axons. In six retinas, IR was present in abnormal, swollen axons of macular and peripheral cones. In the inner retina, weak immunoreactivity was detected in the outer and inner plexiform layer. Transmission electron microscopy revealed a variable degree of microtubule disorganization, abnormal outgrowth from the swollen macular axons (as the fibers of Henle) and few dead axons. The present study adds further evidence to the presence of aberrant photoreceptor axonal changes in the human retina and that nitro-tyrosine immunoreactivity is associated with the photoreceptor cells in select human retina.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aanat.2019.01.006 | DOI Listing |
Ther Adv Respir Dis
January 2025
Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, 4800 Sand Point Way NE, OC 7.730, Seattle, WA 98105, USA.
Background: Joubert syndrome (JS) is an autosomal recessive disorder with a distinctive mid-hindbrain malformation known as the "molar tooth sign" which involves the breathing control center and its connections with other structures. Literature has reported significant respiratory abnormalities which included hyperpnea interspersed with apneic episodes during wakefulness. Larger-scale studies looking at polysomnographic findings or subjective reports of sleep problems in this population have not yet been published.
View Article and Find Full Text PDFTheranostics
January 2025
Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
The human body is an intricate system, where diverse and complex signaling among different organs sustains physiological activities. The eye, as a primary organ for information acquisition, not only plays a crucial role in visual perception but also, as increasing evidence suggests, exerts a broad influence on the entire body through complex circuits upon receiving light signals which is called non-image-forming vision. However, the extent and mechanisms of light's impact on the body through the eyes remain insufficiently explored.
View Article and Find Full Text PDFCureus
December 2024
Ophthalmology Department, University of Kansas School of Medicine, Kansas City, USA.
Background: An idiopathic macular hole (IMH) is a foveal opening in the neurosensory retina caused by perifoveal vitreomacular traction and detachment. IMH prevalence varies considerably across populations, highlighting a need for further investigation, especially in underrepresented groups such as Hispanics.
Methods: This retrospective, descriptive, cross-sectional study analyzed IMH prevalence in a Hispanic population over four years.
Narra J
December 2024
Department of Clinical Pathology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia.
Obesity and retinal microvasculature dysfunction are linked and impact visual acuity. The aim of this study was to determine the relationship between the HOMA-IR score and the presence of vascular dysfunction (capillary perfusion and flux index) of the optic nerve head (ONH) of the retina in obese patients and to determine its diagnostic performance to predict vascular dysfunction. A case-control study was conducted in 2022 involving individuals from obese and non-obese groups.
View Article and Find Full Text PDFThe retinal pigment epithelium (RPE) performs a number of functions essential for retinal health. RPE dysregulation and degeneration can occur in diseases. Methods to image the human RPE directly are limited, as it is only about 10 µm thick and situated between the photoreceptor outer segments and Bruch's membrane (BM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!