Peli1b governs the brain patterning via ERK signaling pathways in zebrafish embryos.

Gene

Department of Life Science, BK21 Plus Program, Graduate School, Chungnam National University, Daejeon 34134, South Korea. Electronic address:

Published: April 2019

Pellino proteins are associated with immune and stress responses through their effects on NF-κB signaling and B-cell development, and through their role as a scaffold in TLR/IL-1R signaling pathways. However, their function during embryonic development is unclear. Here, we report the developmental expression patterns and functions of peli1b, which encodes a zebrafish ortholog of human Pellino1. Maternal peli1b transcripts were present in zebrafish embryos at the 1-cell stage and zygotic transcripts appeared in the shield area at 6 hours post fertilization (hpf), particularly in the neural plate of the dorsal region. peli1b transcripts were concentrated in the somites, lens, myogenic cells, lateral plate mesoderm, and presomitic mesoderm at 12 hpf, but expression shifted to the telencephalon, diencephalon, hindbrain, and rhombomeres (r1-7) at 24 hpf. Distribution of peli1b transcripts was further restricted to the telencephalon, diencephalon, hindbrain, eyes, and pectoral fins at 48 hpf. Knock-down of peli1b with a peli1b antisense morpholino resulted in significant developmental defects and a reduction in size of the telencephalon, diencephalon, rhombomeres (r1-7), and spinal cord at 24 hpf. When peli1b-knock-down embryos were analyzed for zic3, a marker associated with the central nervous system, we found lower levels of zic3 transcripts in the shield area at 6 hpf and in the posterior diencephalon, dorsal neural plate, midbrain, and hindbrain at 14 hpf. Finally, the ERK3/4 inhibitor SB203580 also induced a significant reduction in the level of zic3 transcripts in the neural plate at 6 hpf and in the posterior diencephalon, dorsal neural plate, midbrain, hindbrain, segmental plate, dorsal spinal cord, and dorsal posterior neural plate at 14 hpf. It is thus likely that the association between Peli1b and brain development in zebrafish embryos occurs via ERK3/4 pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2018.12.078DOI Listing

Publication Analysis

Top Keywords

neural plate
20
zebrafish embryos
12
peli1b transcripts
12
telencephalon diencephalon
12
peli1b
8
signaling pathways
8
shield area
8
plate dorsal
8
diencephalon hindbrain
8
rhombomeres r1-7
8

Similar Publications

Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications.

Front Cell Dev Biol

January 2025

Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.

The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling.

View Article and Find Full Text PDF

DeepFocus: a transnasal approach for optimized deep brain stimulation of reward circuit nodes.

J Neural Eng

January 2025

Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213-3815, UNITED STATES.

Objective: Transcranial electrical stimulation (TES) is an effective technique to modulate brain activity and treat diseases. However, TES is primarily used to stimulate superficial brain regions and is unable to reach deeper targets. The spread of injected currents in the head is affected by volume conduction and the additional spreading of currents as they move through head layers with different conductivities, as is discussed in [1].

View Article and Find Full Text PDF

Dorsal-ventral patterning of neural progenitors in the posterior neural tube, which gives rise to the spinal cord, has served as a model system to understand how extracellular signals organize developing tissues. While previous work has shown that signaling gradients diversify progenitor fates at the dorsal and ventral ends of the tissue, the basis of fate specification in intermediate regions has remained unclear. Here we use zebrafish to investigate the neural plate, which precedes neural tube formation, and show that its pre-patterning by a distinct signaling environment enables intermediate fate specification.

View Article and Find Full Text PDF

The brain and spinal cord originate from a neural tube that is preceded by a flat structure known as the neural plate during early embryogenesis. In humans, failure of the neural plate to convert into a tube by the fourth week of pregnancy leads to neural tube defects (NTDs), birth defects with serious neurological consequences. The signaling mechanisms governing the process of neural tube morphogenesis are unclear.

View Article and Find Full Text PDF

The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!