Arabinosyl tranferases (embA, embB, embC) are the key enzymes responsible for biogenesis of arabinan domain of arabinogalactan (AG) and lipoarabinomannan (LAM), two major heteropolysaccharide constituents of the peculiar mycobacterial cell envelope. EmbC is predominantly responsible for LAM synthesis and has been commonly associated with Ethambutol resistance. We have screened the FDA library against EmbC to reposition a drug better than Ethambutol with higher binding affinity to Embc. High throughput virtual screening followed by extra precision docking using Glide gave two best leads i.e. Terlipressin and Amikacin with docking score of -11.39 kcal/mol and -10.71 kcal/mol, respectively. Binding mechanics of the selected drugs was elucidated through long range molecular dynamics simulations (100 ns) using binding free energy rescoring, essential dynamics and free energy minima based approaches, thus revealing the most stable binding modes of Terlipressin with EmbC. Our study establishes the EmbC binding potential of the repurposed drugs Terlipressin and Amikacin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2019.01.029DOI Listing

Publication Analysis

Top Keywords

free energy
12
essential dynamics
8
dynamics free
8
energy minima
8
minima based
8
binding mechanics
8
terlipressin amikacin
8
embc
7
binding
6
drug repurposing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!