In the present study, we evaluated the pharmacokinetics (PK) of trastuzumab and sought to predict human PK based on animal studies, through the use of optical imaging and a whole-body physiologically based pharmacokinetic (WB-PBPK) modeling approach. The PK study was conducted in 24 mice, where serial blood samples were withdrawn and major organs were isolated after the last blood withdrawal. The drug concentrations in blood and major organs were measured via optical imaging. The WB-PBPK model was constructed using known physiological values including the volumes of major organs and blood/lymphatic flow. The NONMEM software (version 7.3) was used to determine tissue partition coefficients. Using the WB-PBPK model, a clinical trial simulation was performed with reference to human physiological values acquired from the literature. The simulated human PK was then compared with the actual PK observed in the previous study in which healthy male subjects received 6 mg/kg trastuzumab (Herceptin) via intravenous route. The ratio of the simulated versus observed area under the concentration-time curve was 1.02 and that of maximal concentration was 0.72. The current study describes the potential synergistic applications of WB-PBPK and optical imaging in human PK prediction based on preclinical data obtained in early-stage drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2019.01.024 | DOI Listing |
Curr Obes Rep
January 2025
Metabolism and Body Composition, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.
Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.
Int Ophthalmol
January 2025
Department of Ophthalmology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane, Dessau, Germany.
Purpose: Uveal melanoma (UM) is the most common primary ocular malignancy. The size and location of the tumor are decisive for brachytherapy with the β-emitting ruthenium-106 (Ru-106) plaque. The treatment of juxtapapillary and juxtafoveolar UM may be challenging because of the proximity or involvement of the macula and optic nerve and high recurrence rates.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Photonics and of Nanotechnologies- National Researcher Council (IFN-CNR), LNESS Laboratory, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy.
Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.
View Article and Find Full Text PDFChembiochem
January 2025
Xidian University, School of Life Science and Technology, 266 Xinglong Section of Xifeng Road, 710126, Xi'an, CHINA.
The resistance of cancer cells to apoptosis poses a significant challenge in cancer therapy, driving the exploration of alternative cell death pathways such as pyroptosis, known for its rapid and potent effects. While initial efforts focused on chemotherapy-induced pyroptosis, concerns about systemic inflammation highlight the need for precise activation strategies. Photothermal therapy emerges as a promising non-invasive technique, minimizing pyroptosis-related side effects by targeting tumors spatially and temporally.
View Article and Find Full Text PDFJ Wound Care
January 2025
Division of Plastic Surgery, Integrated Burn & Wound Care Center, Department of Surgery, Shuang-Ho Hospital, New Taipei City, Taiwan.
Objective: Deep sternal wound infection (DSWI) is a rare but devastating complication that is estimated to occur in 1-2% of patients after median sternotomy. Current standard of care (SoC) comprises antibiotics, debridement and negative pressure wound therapy (NPWT). Hyperbaric oxygen therapy (HBOT) appears to be an effective adjuvant therapy for osteomyelitis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!