Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Owing to accurate future air quality estimates, need for detecting the anomalously high increase in concentration of pollutants cannot be adjourned. Plentiful approaches were proposed in the past to substantially determine the abnormal conditions, but most of the statistical approaches were computationally expensive and ignored the false alarm ratios. Thus, a hybrid of proximity- and clustering-based anomaly detection approaches to identify anomalies in the air quality data is suggested in this work. The Gaussian distribution property of the real-world data set is utilized further to segregate out anomalies. The results depicted twofold advantages of our approach, by efficient extraction of anomalies and with increased accuracy by reducing the number of false alarms. Specifically, the presence of NO concentration in air is investigated in this work, considering its constant increase over decades as well as its inevitable health risks. Furthermore, spatiotemporal segments with anomalously high NO concentrations for 14 residential, industrial, and commercial areas of five cities in India are extracted. To validate the results, a comparative analysis with existing approaches of anomaly detection and with two benchmark data sets is performed. Results showed that our method outperformed the existing methods of anomaly detection, when evaluated over metrics such as sensitivity, miss rate, and false alarms. Further, a detailed analysis of extracted anomalies and a detailed discussion about the factors responsible for such anomalies are presented in this work. This study is helpful in educating government and people about spatiotemporal, geographical, and economic conditions responsible for anomalously high NO concentrations in air. : Using our methodology, days with extremely high concentration of any pollutant in air, at any particular location, can be extracted. The reasons for such extremely high pollutant concentration on particular days of a year can be studied and preventive measures can be taken by the government. Thus, by identification of causes of anomalies, future similar events can be avoided. This would also help in people's decision making in case such events occur in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10962247.2019.1577314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!