The asymmetric transfer hydrogenation (ATH) of ketones/imines with Noyori-Ikariya catalyst represents an important reaction in both academia and fine chemical industry. The method allows for the preparation of chiral secondary alcohols/amines with very good to excellent optical purities. Remarkably, the same chiral Noyori-Ikariya complex is also a precatalyst for a wide range of other chemo- and stereoselective reductive and oxidative transformations. Among them are enantioselective sulfonamidation of acrylates (intramolecular aza-Michael reaction) and carboxylation of indoles with CO. Development of these catalytic reactions has been inspired by the realized cleavage of the N-H bond of sulfonamides and indoles by the 16e amido derivative of the 18e precatalyst via metal-ligand cooperation (MLC). This paper summarizes our efforts to investigate N-H bond cleavage of gaseous ammonia in solution via MLC and reports the serendipitous discovery of a new class of chiral tridentate κ[ N, N', N″] Ru and Ir metallacycles, derivatives of the famous M-FsDPEN catalysts (M = Ru, Ir). The protonation of these metallacycles by strong acids containing weakly coordinating (chiral) anions generates ionic complexes, which were identified as conceptually novel Noyori-Ikariya precatalysts. For example, the ATH of aromatic ketones with some of these complexes proceeds with up to 99% ee.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.8b12961 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!