The high cell density culture of baker's yeast FX-2 was investigated in a 50 L(A) automatic bioreactor. Herein, it was found firstly that the Crabtree effect clearly existed in batch fermentation with higher glucose content, then the critical initial glucose content range (≤2.00 g L ) was reasonably ascertained to effectively avoid Crabtree effect. In the next fed-batch fermentations with different strategies, the second strategy (maintain ethanol concentration lower than 0.10% and pH around 4.80) was confirmed to be more beneficial to yeast growth than the first strategy (keep reducing sugar not more than 2.00 g L and control steady Carbon/Nitrogen ratio 3.05:1.00). After that, one optimal control strategy (maintain pH around 4.80 and keep respiratory quotient in the range of 0.90-1.00) was constructed to further enhance cell yield. Under an optimal control strategy, four schemes with the aim of achieving pH-stat were compared, and yeast extract instead of other alkaline materials was selected as a better regulator. As a result, 148.37 g L dry cell weight, 38.25 × 10 mL living cells, and 8.24 g L  h productivity were harvested, which respectively elevated 23.74%, 135.38%, and 24.47% compared to that obtained under the traditional scheme (regulate pH with ammonia); meanwhile, the maximum oxygen uptake rate and carbon dioxide excretion rate were both more than 250.00 mmol L  min .

Download full-text PDF

Source
http://dx.doi.org/10.1002/bab.1735DOI Listing

Publication Analysis

Top Keywords

high cell
8
cell density
8
density culture
8
culture baker's
8
baker's yeast
8
yeast fx-2
8
respiratory quotient
8
glucose content
8
strategy maintain
8
optimal control
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!