Extracellular acidity and increased exosome release as key phenotypes of malignant tumors.

Cancer Metastasis Rev

Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.

Published: June 2019

The tumor milieu is characteristically acidic as a consequence of the fermentative metabolism of glucose that results in massive accumulation of lactic acid within the cytoplasm. Tumor cells get rid of excessive protons through exchangers that are responsible for the extracellular acidification that selects cellular clones that are more apt at surviving in this challenging and culling environment. Extracellular vesicles (EVs) are vesicles with diameters ranging from nm to μm that are released from the cells to deliver nucleic acids, proteins, and lipids to adjacent or distant cells. EVs are involved in a plethora of biological events that promote tumor progression including unrestricted proliferation, angiogenesis, migration, local invasion, preparation of the metastatic niche, metastasis, downregulation or hijacking of the immune system, and drug resistance. There is evidence that the release of specific exosomes is increased many folds in cancer patients, as shown by many techniques aimed at evaluating "liquid biopsies". The quality of the exosomal contents has been shown to vary at the different moments of tumor life such as local invasion or metastasis. In vitro studies have recently pointed out that cancer acidity is a major determinant in inducing increased exosome release by human cancer cells, by showing that exosomal release was increased as the pH moved from 7.4 pH to the typical pH of cancer that is 6.5. In this review, we emphasize the recent evidence that tumor acidity and exosomes levels are strictly related and strongly contribute to the malignant tumor phenotypes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10555-019-09783-8DOI Listing

Publication Analysis

Top Keywords

increased exosome
8
exosome release
8
local invasion
8
tumor
6
extracellular acidity
4
increased
4
acidity increased
4
release
4
release key
4
key phenotypes
4

Similar Publications

Lysosome-related proteins may have changes in the urinary exosomes of patients with acute gout attack.

Eur J Med Res

January 2025

Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.

Background: The autophagy-lysosome is intricately linked to the development of gout. At present, the diagnosis and monitoring of gout are mainly invasive tests, which cannot predict the occurrence of gout in the acute phase, and bring new pain to patients. This study focuses on the changes of lysosome-related proteins in urinary exosomes of patients with acute gout attack to explore the potential noninvasive biomarkers clinical application value.

View Article and Find Full Text PDF

The hypertension patient population has doubled since 1990, affecting 1.3 billion globally and >75% live in low-and middle-income countries. Angiotensin Converting Enzyme Inhibitors (ACEI) and Angiotensin Receptor Blockers (ARB) are the most prescribed drugs (>160 million times in the US), but mortality increased >30% since 1990s globally.

View Article and Find Full Text PDF

Epithelium-derived exosomal dipeptidyl peptidase-4 involved in arecoline-induced oral submucous fibrosis.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Healthcare Administration, Asia University, 40454 Taichung, Taiwan. Electronic address:

Introduction: Dipeptidyl peptidase-4 is known to be involved in the progression of several fibrogenic diseases, but its association with oral submucous fibrosis remains unclear. This study aims to ascertain whether dipeptidyl peptidase-4 plays a role in the pathogenesis of arecoline-induced oral submucous fibrosis.

Methods: We assessed the expression of dipeptidyl peptidase-4 in arecoline-treated epithelial cells and the exosomes derived from cells.

View Article and Find Full Text PDF

Evaluation of the Effect of Exosomes From Adipose Derived Stem Cells on Changes in GSH/ROS Levels During Skin Photoaging.

Photodermatol Photoimmunol Photomed

January 2025

Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, the First Affiliated Hospital, University of South China, Hengyang, China.

Objective: Exosomes (Exos) from adipose derived stem cells (ADSCs) can delay skin photoaging, but their effects on reactive oxygen species (ROS) remains unclear. This study aimed to investigate the relationship between adipose derived stem cell exosomes (ADSCs-Exos) in anti-photoaging of skin and glutathione (GSH)/ ROS expression in human fibroblasts.

Methods: A skin photoaging model was established by irradiating human fibroblasts with ultraviolet B (UVB) light in vitro.

View Article and Find Full Text PDF

Exosome miR-199a-5p modulated vascular remodeling and inflammatory infiltration of Takayasu's arteritis.

Arthritis Res Ther

January 2025

Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.

Background: Advances in treatment have swiftly alleviated systemic inflammation of Takayasu's arteritis (TAK), while subclinical vascular inflammation and the ensuing arterial remodeling continue to present unresolved challenges in TAK. The phenotypic switching of vascular smooth muscle cells (VSMC) is regarded as the first step in vascular pathology and contributes to arterial remodeling. Exosomes facilitate the transfer and exchange of proteins and specific nucleic acids, thereby playing a significant role in intercellular communication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!