Background: The Southern Ocean is the coldest ocean on Earth but a hot spot of evolution. The bottom-dwelling Eocene ancestor of Antarctic notothenioid fishes survived polar marine glaciation and underwent adaptive radiation, forming >120 species that fill all water column niches today. Genome-wide changes enabling physiological adaptations and the rapid expansion of the Antarctic notothenioids remain poorly understood.
Results: We sequenced and compared 2 notothenioid genomes-the cold-adapted and neutrally buoyant Antarctic toothfish Dissostichus mawsoni and the basal Patagonian robalo Eleginops maclovinus, representing the temperate ancestor. We detected >200 protein gene families that had expanded and thousands of genes that had evolved faster in the toothfish, with diverse cold-relevant functions including stress response, lipid metabolism, protein homeostasis, and freeze resistance. Besides antifreeze glycoprotein, an eggshell protein had functionally diversified to aid in cellular freezing resistance. Genomic and transcriptomic comparisons revealed proliferation of selcys-transfer RNA genes and broad transcriptional upregulation across anti-oxidative selenoproteins, signifying their prominent role in mitigating oxidative stress in the oxygen-rich Southern Ocean. We found expansion of transposable elements, temporally correlated to Antarctic notothenioid diversification. Additionally, the toothfish exhibited remarkable shifts in genetic programs towards enhanced fat cell differentiation and lipid storage, and promotion of chondrogenesis while inhibiting osteogenesis in bone development, collectively contributing to the achievement of neutral buoyancy and pelagicism.
Conclusions: Our study revealed a comprehensive landscape of evolutionary changes essential for Antarctic notothenioid cold adaptation and ecological expansion. The 2 genomes are valuable resources for further exploration of mechanisms underlying the spectacular notothenioid radiation in the coldest marine environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6457430 | PMC |
http://dx.doi.org/10.1093/gigascience/giz016 | DOI Listing |
Nature
January 2025
Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada.
Clouds greatly influence the Earth's energy balance. Observationally constraining cloud radiative feedback, a notably uncertain climate feedback mechanism, is crucial for improving predictions of climate change but, so far, remains an elusive objective, and the feedback may be different over the ocean versus over land. Here we show a local negative surface longwave cloud feedback over land at the southern Great Plains site, constrained by direct long-term observation of spectrally resolved downwelling longwave radiance.
View Article and Find Full Text PDFNature
January 2025
SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
Foraminifera are ubiquitous marine protists that intracellularly accumulate phosphate, an important macronutrient in marine ecosystems and in fertilizer potentially leaked into the ocean. Intracellular phosphate concentrations can be 100-1,000 times higher than in the surrounding water. Here we show that phosphate storage in foraminifera is widespread, from tidal flats to the deep sea.
View Article and Find Full Text PDFAutophagy
January 2025
Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
Although the relationship between macroautophagy/autophagy and Alzheimer disease (AD) is widely studied, the underlying mechanisms are poorly understood, especially the regulatory role of the initiation signaling of autophagy on AD. Here, we find that the ER transmembrane protein CANX (calnexin) is a novel interaction partner of the autophagy-inducing kinase ULK1 and is required for ULK1 recruitment to the ER under basal or starved conditions. Loss of CANX results in the inactivity of ULK1 kinase and inhibits autophagy flux.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
The development of cost-effective point-of-use (POU) devices that effectively remove lead (Pb) from drinking water is imperative in mitigating the threat of Pb contamination to public health in underdeveloped regions. Herein, we have successfully transformed inexpensive natural kaolinite as hydroxy-sodalite (HySOD) via a simple hydrothermal process, achieving an impressive yield of 91.5 %.
View Article and Find Full Text PDFMar Environ Res
January 2025
College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China. Electronic address:
With years of green tide outbreaks in the Southern Yellow Sea (SYS) and climate change, early findings over multiple years suggest that the green tide may originate from various pathways. Previous studies have identified attached outbreak species of U. prolifera in the intertidal zone along the SYS coast.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!