Our previous report based on a 10 (gravity) silicon-based inertial micro-switch showed that the contact effect between the two electrodes can be improved by squeeze-film damping. As an extended study toward its potential applications, the switch with a large proof mass suspended by four flexible serpentine springs was redesigned to achieve 5 threshold value and enhanced threshold accuracy. The impact of the squeeze-film damping on the threshold value was theoretically studied. The theoretical results show that the threshold variation from the designed value due to fabrication errors can be reduced by optimizing the device thickness (the thickness of the proof mass and springs) and then establishing a tradeoff between the damping and elastic forces, thus improving the threshold accuracy. The design strategy was verified by FEM (finite-element-method) simulation and an experimental test. The simulation results show that the maximum threshold deviation was only 0.15 , when the device thickness variation range was 16⁻24 μm, which is an adequately wide latitude for the current bulk silicon micromachining technology. The measured threshold values were 4.9⁻5.8 and the device thicknesses were 18.2⁻22.5 μm, agreeing well with the simulation results. The measured contact time was 50 μs which is also in good agreement with our previous work.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266094 | PMC |
http://dx.doi.org/10.3390/mi9110539 | DOI Listing |
Biomed Tech (Berl)
January 2025
Department of Computer Science, 72937 Centre for Machine Learning and Intelligence (CMLI), Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India.
Objectives: Diabetic retinopathy (DR) is associated with long-term diabetes and is a leading cause of blindness if it is not diagnosed early. The rapid growth of deep learning eases the clinicians' DR diagnosing procedure. It automatically extracts the features and performs the grading.
View Article and Find Full Text PDFInt J Gynaecol Obstet
January 2025
Postgraduate Program in Medicine, Surgical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Objective: This paper evaluates the accuracy of C-reactive protein (CRP), leukocyte count, and neutrophil-to-lymphocyte ratio (NLR) for diagnosing tubo-ovarian abscess (TOA) and assessing the cost-effectiveness of different treatment regimens for pelvic inflammatory disease (PID), with and without TOA.
Method: A retrospective cohort study was conducted between January 1, 2003, and December 30, 2021, including women aged 13-80 years diagnosed with PID. The analysis focused on the incremental cost-effectiveness ratio of different treatment regimens.
Diabetol Metab Syndr
January 2025
First Central Clinical Medical Institute, Tianjin Medical University, Tianjin, China.
Background: To identify the relationship between BMI or lipid metabolism and diabetic neuropathy using a Mendelian randomization (MR) study.
Methods: Body constitution-related phenotypes, namely BMI (kg/m), total cholesterol (TC), and triglyceride (TG), were investigated in this study. Despite the disparate origins of these data, all were accessible through the IEU OPEN GWAS database ( https://gwas.
Acad Radiol
January 2025
Department of Radiology, Shengjing Hospital of China Medical University, China (Y.Y., T.W.). Electronic address:
Rationale And Objectives: Mixed ground-glass nodules (mGGNs) are highly malignant and common nonspecific lung imaging findings. This study aimed to explore whether combining quantitative and qualitative spectral dual-layer detector-based computed tomography (SDCT)-derived parameters with serological tumor abnormal proteins (TAPs) and thymidine kinase 1 (TK1) expression enhances invasive mGGN diagnostic efficacy and to develop a joint diagnostic model.
Materials And Methods: This prospective study included patients with mGGNs undergoing preoperative triple-phase contrast-enhanced SDCT with TAP and TK1 tests.
Neurotherapeutics
January 2025
Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address:
A wide range of acute brain injuries, including both traumatic and non-traumatic causes, can result in elevated intracranial pressure (ICP), which in turn can cause further secondary injury to the brain, initiating a vicious cascade of propagating injury. Elevated ICP is therefore a neurological injury that requires intensive monitoring and time-sensitive interventions. Patients at high risk for developing elevated ICP undergo placement of invasive ICP monitors including external ventricular drains, intraparenchymal ICP monitors, and lumbar drains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!