We present a methodology for building biologically inspired, soft microelectromechanical systems (MEMS) devices. Our strategy combines several advanced techniques including programmable colloidal self-assembly, light-harvesting with plasmonic nanotransducers, and in situ polymerization of compliant hydrogel mechanisms. We synthesize optomechanical microactuators using a template-assisted microfluidic approach in which gold nanorods coated with thermoresponsive poly(N-isopropylmethacrylamide) (pNIPMAM) polymer function as nanoscale building blocks. The resulting microactuators exhibit mechanical properties (4.8 ± 2.1 kPa stiffness) and performance metrics (relative stroke up to 0.3 and stress up to 10 kPa) that are comparable to that of bioengineered muscular constructs. Near-infrared (NIR) laser illumination provides effective spatiotemporal control over actuation (sub-micron spatial resolution at millisecond temporal resolution). Spatially modulated hydrogel photolithography guided by an experimentally validated finite element-based design methodology allows construction of compliant poly(ethylene glycol) diacrylate (PEGDA) mechanisms around the microactuators. We demonstrate the versatility of our approach by manufacturing a diverse array of microdevices including lever arms, continuum microrobots, and dexterous microgrippers. We present a microscale compression device that is developed for mechanical testing of three-dimensional biological samples such as spheroids under physiological conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394202 | PMC |
http://dx.doi.org/10.1039/c8lc01200h | DOI Listing |
Biomimetics (Basel)
December 2024
School of Information Engineering, Quanzhou Ocean Institute, Quanzhou 362700, China.
This study designs and develops a wearable exoskeleton piano assistance system for individuals recovering from neurological injuries, aiming to help users regain the ability to perform complex tasks such as playing the piano. While soft robotic exoskeletons have proven effective in rehabilitation therapy and daily activity assistance, challenges remain in performing highly dexterous tasks due to structural complexity and insufficient motion accuracy. To address these issues, we developed a modular division method based on multi-domain mapping and a top-down process model.
View Article and Find Full Text PDFSoft Matter
January 2025
Information Science School, Guangdong University of Finance and Economics, Guangzhou 510320, China.
We propose a modular addition strategy-regulated polymerization-induced self-assembly (PISA) system to effectively control the reaction kinetics and self-assembly morphologies. We validated this strategy by performing experiments on a well-established PISA system. Two categories of modular addition strategies, , the multistep addition strategy and the constant rate addition strategy, were investigated.
View Article and Find Full Text PDFSoft Robot
January 2025
Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China.
Soft actuators hold great potential for applications in surgical operations, robotic manipulation, and prosthetic devices. However, they are limited by their structures, materials, and actuation methods, resulting in disadvantages in output force and dynamic response. This article introduces a soft pneumatic actuator capable of bending based on triangular prism origami.
View Article and Find Full Text PDFNat Commun
January 2025
Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL, USA.
Prehensile arms are among the most remarkable features of the octopus, but little is known about the neural circuitry controlling arm movements. Here, we report on the cellular and molecular organization of the arm nervous system, focusing on its massive axial nerve cords (ANCs). We found that the ANC is segmented.
View Article and Find Full Text PDFSci Robot
January 2025
Department of Bioengineering, Imperial College of London, London, UK.
Despite the advances in bionic reconstruction of missing limbs, the control of robotic limbs is still limited and, in most cases, not felt to be as natural by users. In this study, we introduce a control approach that combines robotic design based on postural synergies and neural decoding of synergistic behavior of spinal motoneurons. We developed a soft prosthetic hand with two degrees of actuation that realizes postures in a two-dimensional linear manifold generated by two postural synergies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!