A palladium-catalyzed C-H functionalization of an external ring of N-acyl 2-aminobiaryl with bicyclo[2.2.1]hept-2-ene (norbornene) via multiple C-H bond activations was developed. This study is the first report of the formation of bis-norbornene annulated biarylamines isomers ( syn-3a'/ anti-3a' = 36:64) from multiple C-H bond functionalizations. Additionally, nondirected C-H bond functionalization at the C-4' position with alkenes rendered complete C-H functionalization of five C-H bonds that formed a stable hexasubstituted benzene ring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.9b00119 | DOI Listing |
Acc Chem Res
January 2025
Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
Nat Commun
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore.
Employing electrochemistry for the selective functionalization of liquid alkanes allows for sustainable and efficient production of high-value chemicals. However, the large potentials required for C(sp)-H bond functionalization and low water solubility of such alkanes make it challenging. Here we discover that a Pt/IrO electrocatalyst with optimized Cl binding energy enables selective generation of Cl free radicals for C-H chlorination of alkanes.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China.
An adequate understanding of the NO interacting chemistry is a prerequisite for a smoother transition to carbon-lean and carbon-free fuels such as ammonia and hydrogen. In this regard, this study presents a comprehensive study on the H atom abstraction by NO from C to C alkynes, dienes, and trienes forming 3 HNO isomers (i.e.
View Article and Find Full Text PDFThe [CH3OH-CH2X2] (X = Cl, Br, and I) complexes have been studied to understand the tendency towards the formation of hydrogen bonds and halogen bonds. Three different types of interactions viz., C-X· · ·O, C-H· · ·O, and O-H· · ·X, are possible between the CH3OH and CH2X2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!