Polybrominated diphenyl ethers (PBDEs) have been reported to exert reproductive endocrine toxicity, but the mechanisms for this process remain unclear. Currently available studies have concentrated on the enzymatic reactions during steroidogenesis, but the results are not consistent. In this study, we explored the effects of 2,2',4,4'-tertrabromodiphenyl ether (BDE-47) on progesterone biosynthesis and the potential mechanisms in human placental choriocarcinoma cells. The results showed that BDE-47 decreased progesterone production in a dose-dependent manner but had no effect on key enzymes (Cyp11a1 and 3β-HSD). BDE-47 exposure depolarized the mitochondrial membrane potential and downregulated adenosine triphosphate levels. The gene expression levels of Mfn2, Tspo, Atad3, Vdac1, Fis1, and Drp1, which are involved in mitochondrial dynamics and cholesterol transport, were disturbed. The demethylation of some CpG loci of mitochondrial biomarkers (Drp1, Opa1, Vdac2, and Atad3) was induced in the 1 μM BDE-47 exposure group, but no methylation change was observed with 50 μM treatment. Our findings unveiled that the reduction of progesterone synthesis induced by BDE-47 might be associated with cholesterol transportation, mitochondrial dynamics, and mitochondrial functions. These findings provide substantial data on the reproductive endocrine toxicity of PBDEs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrestox.8b00312DOI Listing

Publication Analysis

Top Keywords

mitochondrial functions
8
cholesterol transport
8
reproductive endocrine
8
endocrine toxicity
8
bde-47 exposure
8
mitochondrial dynamics
8
bde-47
6
mitochondrial
6
bde-47 decreases
4
progesterone
4

Similar Publications

Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.

View Article and Find Full Text PDF

An exchangeable SIM probe for monitoring organellar dynamics of necrosis cells and intracellular water heterogeneity in kidney repair.

Proc Natl Acad Sci U S A

January 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.

Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale.

View Article and Find Full Text PDF

Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.

View Article and Find Full Text PDF

Tau phosphorylation suppresses oxidative stress-induced mitophagy via FKBP8 receptor modulation.

PLoS One

January 2025

Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, New York, United States of America.

Neurodegenerative diseases are often characterized by mitochondrial dysfunction. In Alzheimer's disease, abnormal tau phosphorylation disrupts mitophagy, a quality control process through which damaged organelles are selectively removed from the mitochondrial network. The precise mechanism through which this occurs remains unclear.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a primary malignant neoplasm exhibiting a high mortality rate. Taxifolin is a naturally occurring flavonoid compound that exhibits a range of pharmacological properties. The effects of taxifolin on HCC remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!