Purpose: Raman scattering spectra can be thought of as the "fingerprints" of the investigated material. The purpose of this work was to link the absorbed doses of irradiated radiochromic film at the micrometer level with changes in their Raman spectra.
Methods: Raman spectra of irradiated GAFCHROMIC EBT3 film with doses ranging from 0 to 40 Gy were acquired. The excitation wavelengths used in the experiments (457.9 and 647.1 nm) coincided with electronic transitions of the active layer of the film. The effect of resonance Raman scattering enhanced Raman peaks in the resonance region. Spectra were taken in the range of room temperature to around the temperature of liquid nitrogen (-190°C).
Results: The Raman peak intensity redistribution is shown for films with different absorbed doses. The ratio of intensities of the 1445 cm band with respect to the 1330 cm band increases with the increase in absorbed dose. This allows building a dose calibration curve for the film.
Conclusion: The dose distribution of the irradiated film can be identified based on the intensity ratio of the 1445 and 1330 cm bands by means of Raman mapping. This is a noninvasive and computerized readout method which provides micrometer resolution results for the film surface. This is beneficial in the use of radiochromic films as dosimeters for high-precision radiotherapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.13423 | DOI Listing |
Sci Rep
December 2024
Jihua Laboratory, Foshan, 528000, China.
Surface-enhanced Raman scattering (SERS) technology has attracted more and more attention due to its high sensitivity, low water interference, and quick measurement. Constructing high-performance SERS substrates with high sensitivity, uniformity and reproducibility is of great importance to put the SERS technology into practical application. In this paper, we report a simple fabrication process to construct dense silver-coated PMMA nanoparticles-on-a-mirror SRES substrates.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic. Electronic address:
Water is a greatly convenient solvent in Raman spectroscopy. However, non-additive effects sometimes make its signal difficult to subtract. To understand these effects, spectra for clusters of model ions, including transition metal complexes and water molecules, were simulated and analyzed.
View Article and Find Full Text PDFChem Biomed Imaging
December 2024
Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States.
Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Agricultural Technology, Center for Precision Agriculture, Norwegian Institute of Bioeconomy Research (NIBIO), Nylinna 226 2849, Kapp, Norway.
Raman spectroscopy is a powerful and non-invasive analytical method for determining the chemical composition and molecular structure of a wide range of materials, including complex biological tissues. However, the captured signals typically suffer from interferences manifested as noise and baseline, which need to be removed for successful data analysis. Effective baseline correction is critical in quantitative analysis, as it may impact peak signature derivation.
View Article and Find Full Text PDFTalanta
December 2024
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China. Electronic address:
The proliferation of micro/nanoplastics (MNPs) has emerged as a pivotal environmental issue, largely due to their potential for human exposure. Consequently, the development of sensitive and efficient detection methodologies is paramount for elucidating their environmental footprint. Here, we report a novel three-dimensional (3D) surface-enhanced Raman scattering (SERS) sensor, which integrate TiCT/TiO/WO semiconductor heterostructure, for the rapid and sensitive detection of MNPs in environmental matrices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!