Cholinergic neuromodulation is thought to shape network activity in the PFC, and thus PFC-dependent cognitive functions. ACh may modulate the activity of parvalbumin-positive (PV) neurons, which critically regulate cortical network function. However, the mechanisms of cholinergic regulation of PV neuron activity, and particularly of the basket cell (BC) versus chandelier cell (ChC) subtypes, are unclear. Using patch clamp recordings in acute slices, we examined the effects of the ACh receptor (AChR) agonist carbachol on the excitatory synaptic drive onto BCs or ChCs in layers 2 to 6 of mouse PFC. Carbachol increased the frequency and amplitude of spontaneous EPSCs (sEPSCs) recorded from PV BCs in layers 3-6, but not in BCs from layer 2. Moreover, carbachol did not change the sEPSCs in ChCs, which were located exclusively in layer 2. The potentiation of sEPSCs in layers 3-6 BCs was prevented by the Na channel blocker tetrodotoxin and was abolished by the M1-selective muscarinic AChR antagonist pirenzepine. Thus, carbachol potentiates the activity-dependent excitatory drive onto PV neurons via M1-muscarinic AChR activation in a cell type- and layer-specific manner. In current clamp recordings with synaptic transmission blocked, carbachol directly evoked firing in deep layer pyramidal neurons (PNs). In contrast, carbachol elicited deep layer BC firing indirectly, via glutamate-mediated synaptic drive. Our data suggest that ACh powerfully regulates PFC microcircuit function by facilitating the firing of PNs that synaptically recruit deep layer PV BC activity, possibly shaping the patterns of network activity that contribute to cognitive function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354785PMC
http://dx.doi.org/10.1523/ENEURO.0208-18.2018DOI Listing

Publication Analysis

Top Keywords

synaptic drive
12
deep layer
12
cell type-
8
type- layer-specific
8
excitatory synaptic
8
network activity
8
clamp recordings
8
layers 3-6
8
3-6 bcs
8
carbachol
6

Similar Publications

Molecular Dynamics Simulation for Membrane Fusion.

Methods Mol Biol

January 2025

Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.

The soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein complex drives membrane fusion, and this process is further aided by accessory proteins, including complexin and α-synuclein. To understand the molecular mechanism underlying membrane fusion, we introduce an all-atom molecular dynamics (MD) simulation method. This method is used to understand and predict the conformations of protein and lipids, membrane geometry, and their interaction at femtosecond precision, by describing complex chemical systems with atomic models.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a common mood condition affecting multiple brain regions and cell types. Changes in astrocyte function contribute to depressive-like behaviors. However, while neuronal mechanisms driving MDD have been studied in some detail, molecular mechanisms by which astrocytes promote depression have not been extensively explored.

View Article and Find Full Text PDF

Ca excitability of glia to neuromodulator octopamine in Drosophila living brain is greater than that of neurons.

Acta Physiol (Oxf)

February 2025

Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.

Aim: Octopamine in the Drosophila brain has a neuromodulatory role similar to that of noradrenaline in mammals. After release from Tdc2 neurons, octopamine/tyramine may trigger intracellular Ca signaling via adrenoceptor-like receptors on neural cells, modulating neurotransmission. Octopamine/tyramine receptors are expressed in neurons and glia, but how each of these cell types responds to octopamine remains elusive.

View Article and Find Full Text PDF

Deepening our understanding of neuro-cancer interactions can innovate brain tumor treatment. This mini review unfolds the most relevant and recent insights into the neural mechanisms contributing to brain tumor initiation, progression, and resistance, including synaptic connections between neurons and cancer cells, paracrine neuro-cancer signaling, and cancer cells' intrinsic neural properties. We explain the basic and clinical-translational relevance of these findings, identify unresolved questions and particularly interesting future research avenues, such as central nervous system neuro-immunooncology, and discuss the potential transferability to extracranial cancers.

View Article and Find Full Text PDF
Article Synopsis
  • Peripuberty is a crucial time for brain development, and blocking CRFR1 receptors in young rats helps minimize negative effects of early-life stress on neural function and behavior.
  • In an experiment, male rats showed immediate behavioral changes like reduced prepulse inhibition (PPI) after receiving a CRFR1 antagonist, while females only exhibited differences in behavior after becoming adults.
  • Long-term gene expression changes in the amygdala indicate that the effects of CRFR1 blockage during peripuberty impact different neural pathways in males and females, emphasizing the importance of understanding these effects for adolescent mental health.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!