The EIMB Hydrogel Microarray Technology: Thirty Years Later.

Acta Naturae

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, 119991, Russia.

Published: January 2018

 Biological microarrays (biochips) are analytical tools that can be used to implement complex integrative genomic and proteomic approaches to the solution of problems of personalized medicine (e.g., patient examination in order to reveal the disease long before the manifestation of clinical symptoms, assess the severity of pathological or infectious processes, and choose a rational treatment). The efficiency of biochips is predicated on their ability to perform multiple parallel specific reactions and to allow one to study the interactions of biopolymer molecules, such as DNA, proteins, glycans, etc. One of the pioneers of microarray technology was the Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences (EIMB), with its suggestion to immobilize molecular probes in the three-dimensional structure of a hydrophilic gel. Since the first experiments on sequencing by hybridization on oligonucleotide microarrays conducted some 30 years ago, the hydrogel microarrays designed at the EIMB have come a long and successful way from basic research to clinical laboratory diagnostics. This review discusses the key aspects of hydrogel microarray technology and a number of state-ofthe-art approaches for a multiplex analysis of DNA and the protein biomarkers of socially significant diseases, including the molecular genetic, immunological, and epidemiological aspects of pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351029PMC

Publication Analysis

Top Keywords

microarray technology
12
hydrogel microarray
8
eimb hydrogel
4
technology thirty
4
thirty years
4
years  biological
4
 biological microarrays
4
microarrays biochips
4
biochips analytical
4
analytical tools
4

Similar Publications

Biochips are widely applied to manipulate the geometrical morphology of stem cells in recent years. Patterned antenna-like pseudopodia are also probed to explore the influence of pseudopodia formation on gene delivery and expression on biochips. However, how the antenna-like pseudopodia affect gene transfection is unsettled and the underlying trafficking mechanism of exogenous genes in engineered single cells is not announced.

View Article and Find Full Text PDF

Recently, there has been growing interest in the role of circular RNAs (circRNAs) in the progression of human cancers. Cellular senescence, a known anti-tumour mechanism, has been observed in several types of cancer. However, the regulatory interplay of circRNAs with cellular senescence in pancreatic cancer (PC) is still unknown.

View Article and Find Full Text PDF

Obesity (OB) and atherosclerosis (AS) represent two highly prevalent and detrimental chronic diseases that are intricately linked. However, the shared genetic signatures and molecular pathways underlying these two conditions remain elusive. This study aimed to identify the shared diagnostic genes and the associated molecular mechanism between OB and AS.

View Article and Find Full Text PDF

Vitiligo is a complex autoimmune disease characterized by the loss of melanocytes, leading to skin depigmentation. Despite advances in understanding its genetic and molecular basis, the precise mechanisms driving vitiligo remain elusive. Integrating multiple layers of omics data can provide a comprehensive view of disease pathogenesis and identify potential therapeutic targets.

View Article and Find Full Text PDF

Introduction: There are scarce data on Indian blood donors with respect to blood group phenotypes using molecular diagnostic modalities. Hence, we planned to estimate frequencies of blood group alleles/phenotypes using DNA microarray analysis in the north Indian RhD-negative blood donor population. With this initial pilot study, we plan to expand it to our entire donor population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!