Water electrolysis for hydrogen production has long been regarded as an ideal tactic for renewable energy conversion and storage, but is impeded by the sluggish kinetics of both the hydrogen and oxygen evolution reactions, which are therefore in urgent need for high-performance but low-cost electrocatalysts. Herein, nanoframes of transition metal phosphides (TMPs) with the 3D framework carved open have been demonstrated as highly potent bifunctional catalysts for overall water splitting, reaching the benchmark performance of the Pt/C‖RuO couple, and are much superior to their nanocubic counterparts. This excellent water splitting behavior can be attributed to the enlarged active surface area, less obstructed electrolyte infiltration, promoted charge transfer, and facilitated gas release. Further through in-depth activity analysis and post-electrocatalysis characterization, special attention has been paid to the fate and role of phosphorus in the electrocatalytic process, suggesting that despite the chemical instability of the TMPs (especially under OER conditions), excellent electrocatalytic stability can still be achieved through the amorphous bimetallic hydroxides/oxides formed .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334264 | PMC |
http://dx.doi.org/10.1039/c8sc03877e | DOI Listing |
Inorg Chem
December 2024
Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
Interfacial engineering is considered an effective strategy to improve the electrochemical water-splitting activity of catalysts by modulating the local electronic structure to expose more active sites. Therefore, we report a platinum-cobaltic oxide nanosheets (Pt/CoO NSs) with plentiful grain boundary as the efficient bifunctional electrocatalyst for water splitting. The Pt/CoO NSs exhibit a low overpotential of 55 and 201 mV at a current density of 10 mA cm for the hydrogen evolution reaction and oxygen evolution reaction in 1.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA.
Multi-copper oxidases (MCOs) are enzymes of significant interest in biotechnology due to their efficient catalysis of oxygen reduction to water, making them valuable in sustainable energy production and bio-electrochemical applications. This study employs time-dependent density functional theory (TDDFT) to investigate the electronic structure and spectroscopic properties of the Type 1 (T1) copper site in Azurin, which serves as a model for similar sites in MCOs. Four model complexes of varying complexity were derived from the T1 site, including 3 three-coordinate models and 1 four-coordinate model with axial methionine ligation, to explore the impact of molecular branches and axial coordination.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China. Electronic address:
Nano Lett
December 2024
Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
Developing highly efficient non-iridium-based active sites for acidic water splitting is still a huge challenge. Herein, unique Ru-B-Cr moieties have been constructed in RuO nanofibers (NFs) to activate Ru sites for water electrolysis, which overcomes the bottleneck of RuO-based catalysts usually possessing low activity for the hydrogen evolution reaction (HER) and poor stability for the oxygen evolution reaction (OER). The fabricated Cr, B-doped RuO NFs exhibit low overpotentials of 205 and 379 mV for acidic HER and OER at 1 A cm with outstanding stability lasting 1000 and 188 h, respectively.
View Article and Find Full Text PDFLangmuir
December 2024
College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China.
The active site density, intrinsic activity, and supporting substrate of cobalt phosphide catalysts are vital to their performance in alkaline water electrolysis. In this work, a CoP/CoP loaded on cellulose nanofiber-derived carbon aerogels (CP/CCAs) bifunctional electrocatalyst with a three-dimensional network and heterostructure is illustrated through sequential facile hydrothermal, freeze-drying, and phosphorylation processes. The three-dimensional network of carbon aerogels derived from cellulose nanofibers reveals a specific surface area of 183.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!