Refinement of high precision Ru isotope analysis using negative thermal ionization mass spectrometry.

Int J Mass Spectrom

Department of Geology, University of Maryland, College Park, MD 20742, USA.

Published: June 2016

A refined method for the isolation, purification, and high precision measurement of Ru isotope compositions in natural samples by negative thermal ionization mass spectrometry (N-TIMS) is reported. After chemical purification of Ru using ion exchange chromatography and microdistillation techniques, the Ru isotopic composition is measured as RuO- via N-TIMS. Data are corrected for oxide interferences using the simultaneously measured oxygen isotope composition, and subsequently for mass fractionation using an exponential law. Repeat analyses of an Ru standard solution demonstrate external reproducibility of Ru/Ru to ±6.4 ppm (2SD). This level of precision is more than two times better than prior techniques. Repeat analyses of gravimetrically prepared mixtures of a natural Ru standard and a Ru enriched spike show that isotopic differences of ≥13 ppm can be resolved by single measurements of a material using this method. Repeat analyses of diverse terrestrial materials (chromitites and Os-Ir-Ru alloys) are characterized by compositions that are identical to the standard, and the external reproducibility for these materials is also identical to that of the chemically pure standard, demonstrating that chemical separation/purification methods introduce no bias to the analysis. These materials likely define the Ru isotopic composition of the Earth's mantle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357972PMC
http://dx.doi.org/10.1016/j.ijms.2016.02.003DOI Listing

Publication Analysis

Top Keywords

repeat analyses
12
high precision
8
negative thermal
8
thermal ionization
8
ionization mass
8
mass spectrometry
8
isotopic composition
8
external reproducibility
8
refinement high
4
precision isotope
4

Similar Publications

The natural compound orotic acid and its anionic form, orotate, play a pivotal role in various biological processes, serving as essential intermediates in pyrimidine de novo synthesis, with demonstrated connections to dietary, supplement, and neurodrug applications. A novel perspective on biomolecular aggregation at the nanoscale, particularly pertinent to neurodegeneration, challenges the established paradigm positing that peptide (amyloid beta) and protein (tau) aggregation mainly govern the molecular events underlying prevalent neuropathologies. Emerging biological evidence indicates a notable role for G-quadruplex (G4) DNA aggregation in neurodegenerative processes affecting neuronal cells, particularly in the presence of extended (GC) repeats in nuclear DNA sequences.

View Article and Find Full Text PDF

Forensic science takes advantage of population variability in autosomal Short Tandem Repeat (STR) lengths to establish human identification. The most common method for DNA profiling by STR is based on PCR, where the highly polymorphic STR regions are amplified and analysed using Capillary Electrophoresis (CE) or Massively Parallel Sequencing (MPS). MPS determines not only the repeat length, but also the repeat structure and variations in the flanking regions, making this method superior in discriminatory power compared to CE.

View Article and Find Full Text PDF

Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.

Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.

View Article and Find Full Text PDF

The dCas9/crRNA linked immunological assay (dCLISA) for sensitive, accurate, and facile drug resistance gene analysis.

Biosens Bioelectron

January 2025

Jinling Clinical Medical College, Nanjing University of Chinese Medicine, 210002, Nanjing, Jiangsu Province, China; Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 210002, Nanjing, Jiangsu Province, China; Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, 210002, Nanjing, Jiangsu Province, China. Electronic address:

The rapid and reliable diagnosis of methicillin-resistant Staphylococcus aureus (MRSA) is essential for preventing the spread of MRSA infections and guiding therapeutic strategies. However, there is still a huge challenge in further simplifying MRSA detection procedures and improving detection selectivity to reduce false-positive results. In this study, we developed a derivative CRISPR-associated protein 9/CRISPR-derived RNA Linked Immunological Assay (dCLISA) for the sensitive and specific detection of MRSA.

View Article and Find Full Text PDF

Common Ancestry of the Id Locus: Chromosomal Rearrangement and Polygenic Possibilities.

J Mol Evol

January 2025

Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.

The diversity in dermal pigmentation and plumage color among domestic chickens is striking, with Black Bone Chickens (BBC) particularly notable for their intense melanin hyperpigmentation. This unique trait is driven by a complex chromosomal rearrangement on chromosome 20 at the Fm locus, resulting in the overexpression of the EDN3 (a gene central to melanocyte regulation). In contrast, the inhibition of dermal pigmentation is regulated by the Id locus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!