Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have synthesized a series of stimuli-responsive brush polymers by grafting azide-terminated side chains onto a self-immolative, alkyne-bearing poly(benzyl ether) backbone, which is prepared by anionic polymerization of quinone methide-based monomers. Upon exposure to a decapping reagent (Pd(0) or F), these brush polymers undergo an irreversible degradation cascade from head to tail to yield individual side chains. It is observed that several factors affect the depolymerization kinetics, including solvent polarity, type of counterion, the rate of the decapping chemistry, and interestingly, the rigidity of the side chains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.macromol.8b00208 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!