Glycosylation and its by-product, the glycan, play a crucial role in many cellular processes. Aberrant glycan structures and mutations of the glycosylation pathway have been intricately linked with the development of cancer and more recently with cancer's ability to escape the innate immune system. This chapter aims to elucidate how glycosylation interacts with the immune system to promote tumor deviation through endogenous lectins, mutated glycosphingolipids, sialic acid domains, and more. This chapter also explores the mechanisms of glycosylation that may lead to powerful translational therapeutic tools, such as glycotransferase inhibitors, glycan/glycopeptide-based vaccines, and antibody-based immunotherapies, all of which have shown great promise clinically in the field of immuno-oncology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.ircmb.2018.05.014 | DOI Listing |
J Transl Med
January 2025
Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy.
Background: Clonal myeloproliferation and fibrotic transformation of the bone marrow (BM) are the pathogenetic events most commonly occurring in myelofibrosis (MF). There is great evidence indicating that tumor microenvironment is characterized by high lactate levels, acting not only as an energetic source, but also as a signaling molecule.
Methods: To test the involvement of lactate in MF milieu transformation, we measured its levels in MF patients' sera, eventually finding a massive accumulation of this metabolite, which we showed to promote the expansion of immunosuppressive subsets.
Mol Cancer
January 2025
Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC.
View Article and Find Full Text PDFWorld J Surg Oncol
January 2025
Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Early-onset (EOCC) and late-onset cervical cancers (LOCC) represent two clinically distinct subtypes, each defined by unique clinical manifestations and therapeutic responses. However, their immunological profiles remain poorly explored. Herein, we analyzed single-cell transcriptomic data from 4 EOCC and 4 LOCC samples to compare their immune architectures.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, Korea.
Background: Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. Single-cell RNA sequencing (scRNA-seq) provides gene expression profiles at the single-cell level. Hence, we evaluated gene expression in the peripheral blood of patients with COPD.
View Article and Find Full Text PDFBMC Public Health
January 2025
Department of Hepatobiliary Surgery, Yixing People's Hospital Affiliated to Jiangsu University, Yixing, China.
Objective: Several studies have discussed the relationship between cholesterol and gallstones, and high-density lipoprotein cholesterol (HDL-C) as a representative of this has been addressed in various diseases. The metric neutrophil to high-density lipoprotein cholesterol ratio (NHR) derived from HDL-C has attracted much attention. The purpose of this article is to examine the relationship between NHR and gallstones in a population of American adults.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!