Glycosylation and Antitumor Immunity.

Int Rev Cell Mol Biol

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

Published: February 2020

Glycosylation and its by-product, the glycan, play a crucial role in many cellular processes. Aberrant glycan structures and mutations of the glycosylation pathway have been intricately linked with the development of cancer and more recently with cancer's ability to escape the innate immune system. This chapter aims to elucidate how glycosylation interacts with the immune system to promote tumor deviation through endogenous lectins, mutated glycosphingolipids, sialic acid domains, and more. This chapter also explores the mechanisms of glycosylation that may lead to powerful translational therapeutic tools, such as glycotransferase inhibitors, glycan/glycopeptide-based vaccines, and antibody-based immunotherapies, all of which have shown great promise clinically in the field of immuno-oncology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.ircmb.2018.05.014DOI Listing

Publication Analysis

Top Keywords

immune system
8
glycosylation
5
glycosylation antitumor
4
antitumor immunity
4
immunity glycosylation
4
glycosylation by-product
4
by-product glycan
4
glycan play
4
play crucial
4
crucial role
4

Similar Publications

Background: Clonal myeloproliferation and fibrotic transformation of the bone marrow (BM) are the pathogenetic events most commonly occurring in myelofibrosis (MF). There is great evidence indicating that tumor microenvironment is characterized by high lactate levels, acting not only as an energetic source, but also as a signaling molecule.

Methods: To test the involvement of lactate in MF milieu transformation, we measured its levels in MF patients' sera, eventually finding a massive accumulation of this metabolite, which we showed to promote the expansion of immunosuppressive subsets.

View Article and Find Full Text PDF

B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC.

View Article and Find Full Text PDF

Early-onset (EOCC) and late-onset cervical cancers (LOCC) represent two clinically distinct subtypes, each defined by unique clinical manifestations and therapeutic responses. However, their immunological profiles remain poorly explored. Herein, we analyzed single-cell transcriptomic data from 4 EOCC and 4 LOCC samples to compare their immune architectures.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. Single-cell RNA sequencing (scRNA-seq) provides gene expression profiles at the single-cell level. Hence, we evaluated gene expression in the peripheral blood of patients with COPD.

View Article and Find Full Text PDF

Objective: Several studies have discussed the relationship between cholesterol and gallstones, and high-density lipoprotein cholesterol (HDL-C) as a representative of this has been addressed in various diseases. The metric neutrophil to high-density lipoprotein cholesterol ratio (NHR) derived from HDL-C has attracted much attention. The purpose of this article is to examine the relationship between NHR and gallstones in a population of American adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!