A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spinal cord detection in planning CT for radiotherapy through adaptive template matching, IMSLIC and convolutional neural networks. | LitMetric

AI Article Synopsis

  • * The proposed methodology uses advanced techniques like adaptive template matching, IMSLIC, and convolutional neural networks to automate the detection of the spinal cord in CT images, reducing human error and making the process more efficient.
  • * Testing on 36 CT images showed high accuracy (92.55%), specificity (92.87%), and sensitivity (89.23%) for spinal cord detection, indicating that this computational approach is effective for treatment planning in radiotherapy.

Article Abstract

Background And Objective: The spinal cord is a very important organ that must be protected in treatments of radiotherapy (RT), considered an organ at risk (OAR). Excess rays associated with the spinal cord can cause irreversible diseases in patients who are undergoing radiotherapy. For the planning of treatments with RT, computed tomography (CT) scans are commonly used to delimit the OARs and to analyze the impact of rays in these organs. Delimiting these OARs take a lot of time from medical specialists, plus the fact that involves a large team of professionals. Moreover, this task made slice-by-slice becomes an exhaustive and consequently subject to errors, especially in organs such as the spinal cord, which extend through several slices of the CT and requires precise segmentation. Thus, we propose, in this work, a computational methodology capable of detecting spinal cord in planning CT images.

Methods: The techniques highlighted in this methodology are adaptive template matching for initial segmentation, intrinsic manifold simple linear iterative clustering (IMSLIC) for candidate segmentation and convolutional neural networks (CNN) for candidate classification, that consists of four steps: (1) images acquisition, (2) initial segmentation, (3) candidates segmentation and (4) candidates classification.

Results: The methodology was applied on 36 planning CT images provided by The Cancer Imaging Archive, and achieved an accuracy of 92.55%, specificity of 92.87% and sensitivity of 89.23% with 0.065 of false positives per images, without any false positives reduction technique, in detection of spinal cord.

Conclusions: It is demonstrated the feasibility of the analysis of planning CT images using IMSLIC and convolutional neural network techniques to achieve success in detection of spinal cord regions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2019.01.005DOI Listing

Publication Analysis

Top Keywords

spinal cord
24
convolutional neural
12
adaptive template
8
template matching
8
imslic convolutional
8
neural networks
8
initial segmentation
8
segmentation candidates
8
planning images
8
false positives
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!