Biofilms typically increase surface roughness and consequently the drag penalties on marine vessels. However, there is a lack of data regarding the time-dependent influence of biofilms on antifouling surface characteristics and frictional drag, especially for surface coatings with different sizes of cuprous oxide (). In this study, a series of pressure drop measurements was carried out using flat plates coated with different sizes of . The cuprous oxide-containing surfaces were deployed at sea for a period of six months to allow biofilm to develop. Surface microstructure and roughness analyses were carried out every six weeks using scanning electron microscopy and laser roughness surface profilometry. From the data, the added frictional drag caused by biofilm on ships was predicted, based on roughness function using Granville extrapolations. The analyses indicated that biofilms had significant impacts by altering the surface microstructure, resulting in higher frictional drag. However, due to the interaction between the biofilm and the physico-chemical properties of the substratum for panels coated with larger , the roughness and drag measurement results were both found to have fluctuating increments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08927014.2018.1559305 | DOI Listing |
Biophys Rev
December 2024
Department of Physics, Lancaster University, Lancaster, LA1 4YB UK.
Friction is a critical factor in the proper functioning of human organs as well as in the potential development of disease. It is also important for the design of diagnostic and interventional medical devices. Nanoscale surface roughness, viscoelastic or plastic deformations, wear, and lubrication all influence the functions of individual cells.
View Article and Find Full Text PDFAdv Mater
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Shark skin features superhydrophilic and riblet-textured denticles that provide drag reduction, antifouling, and mechanical protection. The artificial riblet structures exhibit drag reduction capabilities in turbulent flow. However, the effects of the surface wettability of shark denticles and the cavity region underneath the denticle crown on drag reduction remain insufficiently explored.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, College of Engineering, University of Ha'il, 81451, Ha'il City, Saudi Arabia.
Non-Newtonian fluids are also widely used in a variety of scientific, engineering, and industrial domains, including the petroleum sector and polymer technologies. They are vital in the development of drag-reducing agents, damping and braking systems, food manufacturing, personal protective equipment, and the printing industry. Fluid movement and transport via porous materials draw a lot of attention; they are important in science and technology.
View Article and Find Full Text PDFSci Rep
December 2024
Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO, 80305, USA.
The warm Western Boundary Currents (WBCs) and their zonal extensions are persistent, deep, strong and narrow oceanic currents. They are known to anchor and energize the Extra-Tropical storm tracks by frontal thermal air-sea interactions. However, even in the latest generation of climate models, WBCs are characterized by large biases, and both the present storm-track activity and its recent intensification are poorly estimated.
View Article and Find Full Text PDFSci Rep
October 2024
Tianjin Research Institute for Water Transport EngineeringM. O. T., Tianjin, 300456, China.
Pile foundation structures are widely used in the construction of high-piled wharves in coastal soft soil areas due to their excellent adaptability to such environments. However, the extensive, deep backfilling involved in constructing these wharves can easily induce negative skin friction (NSF) on the piles, resulting in safety issues such as excessive settlement during the service life of the structures. This paper presents an indoor model experiment to examine the distribution of the THE NSF under varying pile-top loads and surcharge effects on single pile and double-sleeve pile foundations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!