Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.8b03603DOI Listing

Publication Analysis

Top Keywords

actinide chemistry
4
chemistry extreme
4
actinide
1
extreme
1

Similar Publications

Selective Crystallization Separation of Uranium(VI) Complexes from Lanthanides.

Inorg Chem

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.

The limited availability of uranium (U) resources poses significant challenges to the advancement of nuclear energy. Recycling uranium from spent fuel is critical, but the coexistence of lanthanides (Ln) complicates the extraction process significantly. Here, we present an N/O ligand, ()-'-(pyridin-2-ylmethylene) picolinohydrazide (), designed for the selective recovery of U(VI) over Ln(III/IV) in acidic environments.

View Article and Find Full Text PDF

Giving actinide chemistry a new start.

Nat Rev Chem

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

View Article and Find Full Text PDF

Comprehensive determination of elements ranging from uranium to americium by hybrid measurement of fluorescent and spontaneously emitted characteristic X-rays.

Talanta

January 2025

National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba, Chiba, 263-8555, Japan; Department of Physics, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.

Natural uranium isotopes have extremely long half-lives; therefore, analytical methods based on the number of atoms, such as X-ray fluorescence (XRF) analysis, are suitable for uranium detection. However, XRF measurements cannot be used to detect the major isotopes of americium when present in amounts barely detectable using radiation measurements, owing to their relatively short half-lives. Because of α-decay-induced internal conversion, where orbital electrons are emitted instead of γ-rays, these nuclides emit characteristic X-rays.

View Article and Find Full Text PDF

Ionizing radiation emitted from radionuclides is present everywhere in the environment. It is the main source of health hazards to the general public. The present study elaborates on the analysis of primordial radionuclides in the collected soil samples from the Main Central Thrust (MCT) region of Uttarakhand Himalaya in a grid pattern.

View Article and Find Full Text PDF
Article Synopsis
  • Actinide elements like U, Np, and Pu often form actinyl ions (AnO) in their +V and +VI oxidation states, which are significant for understanding environmental behavior and nuclear processes.
  • Research on [AnO(saldien)] complexes shows that their molecular structures share similarities, with some variations caused by actinide contraction, while their redox potentials increase from U to Np and then decrease to Pu, indicating distinct electronic configurations.
  • The study's findings, supported by DFT-based calculations, enhance our understanding of actinide oxidation states, which is crucial for various applications, including nuclear fuel management and advancements in spintronics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!