The methanol-regulated alcohol oxidase promoter (P ) of Pichia pastoris (syn. Komagataella spp. ) is one of the strongest promoters for heterologous gene expression. Although increasing the gene dosage is a common strategy to improve recombinant protein productivities, P. pastoris strains harboring more than two copies of a Rhizopus oryzae lipase gene (ROL) have previously shown a decrease in cell growth, lipase production, and substrate consumption, as well as a significant transcriptional downregulation of methanol metabolism. This pointed to a potential titration effect of key transcriptional factors methanol expression regulator 1 (Mxr1) and methanol-induced transcription factor (Mit1) regulating methanol metabolism caused by the insertion of multiple expression vectors. To prove this hypothesis, a set of strains carrying one and four copies of ROL (1C and 4C, respectively) were engineered to coexpress one or two copies of MXR1*, coding for an Mxr1 variant insensitive to repression by 14-3-3 regulatory proteins, or one copy of MIT1. Small-scale cultures revealed that growth, Rol productivity, and methanol consumption were improved in the 4C-MXR1* and 4C-MIT1, strains growing on methanol as a sole carbon source, whereas only a slight increase in productivity was observed for re-engineered 1C strains. We further verified the improved performance of these strains in glycerol-/methanol-limited chemostat cultures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.26947DOI Listing

Publication Analysis

Top Keywords

methanol metabolism
12
pichia pastoris
8
komagataella spp
8
multiple expression
8
strains
5
methanol
5
deregulation methanol
4
metabolism reverts
4
reverts transcriptional
4
transcriptional limitations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!