Biochemical characterization of mismatch-binding protein MutS1 and nicking endonuclease MutL from a euryarchaeon Methanosaeta thermophila.

DNA Repair (Amst)

Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan. Electronic address:

Published: March 2019

In eukaryotes and most bacteria, the MutS1/MutL-dependent mismatch repair system (MMR) corrects DNA mismatches that arise as replication errors. MutS1 recognizes mismatched DNA and stimulates the nicking endonuclease activity of MutL to incise mismatch-containing DNA. In archaea, there has been no experimental evidence to support the existence of the MutS1/MutL-dependent MMR. Instead, it was revealed that a large part of archaea possess mismatch-specific endonuclease EndoMS, indicating that the EndoMS-dependent MMR is widely adopted in archaea. However, some archaeal genomes encode MutS1 and MutL homologs, and their molecular functions have not been revealed. In this study, we purified and characterized recombinant MutS1 and the C-terminal endonuclease domain of MutL from a methanogenic archaeon Methanosaeta thermophila (mtMutS1 and the mtMutL CTD, respectively). mtMutS1 bound to mismatched DNAs with a higher affinity than to perfectly-matched and other structured DNAs, which resembles the DNA-binding specificities of eukaryotic and bacterial MutS1 homologs. The mtMutL CTD showed a Mn/Ni/Co-dependent nicking endonuclease activity that introduces single-strand breaks into a circular double-stranded DNA. The nicking endonuclease activity of the mtMutL CTD was impaired by mutagenizing the metal-binding motif that is identical to those of eukaryotic and bacterial MutL endonucleases. These results raise the possibility that not only the EndoMS-dependent MMR but also the traditional MutS1/MutL-dependent MMR exist in archaea.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dnarep.2019.01.005DOI Listing

Publication Analysis

Top Keywords

nicking endonuclease
16
endonuclease activity
12
mtmutl ctd
12
methanosaeta thermophila
8
muts1/mutl-dependent mmr
8
endoms-dependent mmr
8
eukaryotic bacterial
8
endonuclease
6
muts1
5
mutl
5

Similar Publications

Design and Optimization of Isothermal Gene Amplification for Generation of High-Gain Oligonucleotide Products by MicroRNAs.

ACS Meas Sci Au

December 2024

Department of Bioengineering and Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea.

Thermal cycling-based quantitative polymerase chain reaction (qPCR) represents the gold standard method for accurate and sensitive nucleic acid quantification in laboratory settings. However, its reliance on costly thermal cyclers limits the implementation of this technique for rapid point-of-care (POC) diagnostics. To address this, isothermal amplification techniques such as rolling circle amplification (RCA) have been developed, offering a simpler alternative that can operate without the need for sophisticated instrumentation.

View Article and Find Full Text PDF

In eukaryotic post-replicative mismatch repair, MutS homolog complexes detect mismatches and in the major eukaryotic pathway, recruit Mlh1-Pms1/MLH1-PMS2 (yeast/human) complexes, which nick the newly replicated DNA strand upon activation by the replication processivity clamp, PCNA. This incision enables mismatch removal and DNA repair. Beyond its endonuclease role, Mlh1-Pms1/MLH1-PMS2 also has ATPase activity, which genetic studies suggest is essential for mismatch repair, although its precise regulatory role on DNA remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • A new assay was developed to measure the activity of the nicking endonuclease (NE) Nt.Bst9I using biotinylated DNA oligonucleotides as a substrate.
  • To enhance the assay's sensitivity, a chemiluminescent detection system was implemented, utilizing a streptavidin-polyperoxidase conjugate and an enhanced chemiluminescence reaction.
  • The assay methods were designed for microtiter plates, facilitating automated analysis with ELISA equipment, and the heterogeneous format proved to be more sensitive than the homogeneous-heterogeneous format.
View Article and Find Full Text PDF

Combinational therapies provoking cell death are of major interest in oncology. Combining TORC2 kinase inhibition with the radiomimetic drug Zeocin results in a rapid accumulation of double-strand breaks (DSB) in the budding yeast genome. This lethal Yeast Chromosome Shattering (YCS) requires conserved enzymes of base excision repair.

View Article and Find Full Text PDF

Base excision repair (BER) maintains genome integrity by fixing oxidized bases that could be formed when reactive oxygen species attack directly on the DNA. We previously reported the importance of a proper coordination at the downstream steps involving gap filling by DNA polymerase (pol) β and subsequent nick sealing by DNA ligase (LIG) 1 or 3α. Yet, how the fidelity of 8-oxoG bypass by polβ affects the efficiency of ligation remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!