Apatite subspecies depend on their halogen and hydroxyl content; chlorapatite, hydroxylapatite and fluorapatite, with additional substitution of other elements within the lattice such as rare earth elements (REE), sodium, strontium and manganese also possible. Rare earth elements are vital to green and emerging technologies, with demand set to outstrip supply. Apatite provides a possible future source of REE. Processing rare earth deposits is often complex, with surface behaviour having a significant effect on the optimization of a process flow sheet. The effect of enrichment of natural apatite and the doping of synthetic apatite on surface behaviour can be determined by measuring the zeta potential and the isoelectric point of the mineral. In this paper, we review zeta potential studies of natural and synthetic apatite to determine the effect of elemental enrichment on surface behaviour. Fifty three studies of natural apatite and forty four studies of synthetic apatite were reviewed. The isoelectric point of apatite varied from pH 1 to pH 8.7, with studies of apatite specified to be >90% pure reducing the variation to pH 3 to pH 6.5. Of the four studies of rare earth enriched apatite found, three had IEP values between pH 3 and pH 4. A study of synthetic apatite showing enrichment of between 1 and 10% by the REE europium does not affect surface behaviour. However, no studies were found that investigated the effect of common REE processing reagents on REE enriched apatite zeta potentials. Therefore, in addition to comparing previous studies we also therefore present new zeta potential measurements of apatite from a REE enriched deposit under water and common flotation collector conditions. The IEP value of this apatite under water conditions was at pH 3.6, shifting to <3.5 under both hydroxamic acid and betacol conditions. When compared to previous studies, the behaviour of REE enriched apatite under collector conditions is similar to non-REE apatite. This result could be important for future processing of apatite enriched with REE, and therefore global apatite and rare earth supply.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2019.01.004 | DOI Listing |
Sci Rep
January 2025
College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, China.
Utilizing aerosol jet printing (AJP), this study achieves a breakthrough in fabricating luminescent fibers with superior optical performance and flexibility. The YO:Eu coated high silica glass fibers demonstrate luminous efficiency twice that of traditional methods, retaining 80% after 250 bending cycles and 90% after sweat immersion. This AJP technique not only elevates the potential of smart fabrics but also represents a significant innovation in lighting technology, providing new ideas for advanced functional fiber fabrication.
View Article and Find Full Text PDFLangmuir
January 2025
The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin RD, Shanghai 200234, China.
Ascorbyl tetraisopalmitate (VC-IP) is a novel form of ascorbic acid characterized by reduced water solubility due to complete acylation with palmitate. This study investigated the potential cosmetic application of VC-IP when encapsulated in lyotropic liquid crystal nanoparticles (VC-IP LCNPs) by using a high-pressure homogenization (HPH) method. The particle size, zeta potential, and polydispersity index (PDI) of the obtained VC-IP LCNPs were determined as 158.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China. Electronic address:
Thallium (Tl), recognized for its high toxicity, is subject to stringent international regulations regarding its permissible concentrations at ultra-trace levels. In this study, titanium dioxide (TiO) was integrated with potassium (K)-rich biochar to create TiO/biochar (TiO/BC) composites for synergistic enhancement in ultra-trace Tl(I) removal, focusing on achieving concentration below the rigorous local threshold of 0.1 μg/L for drinking water.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Earth System Sciences, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg 20146, Germany.
As an essential micronutrient, phosphorus plays a key role in oceanic biogeochemistry, with its cycling intimately connected to the global carbon cycle and climate change. Authigenic carbonate fluorapatite (CFA) has been suggested to represent a significant phosphorus sink in the deep ocean, but its formation mechanisms in oceanic low-productivity settings remain poorly constrained. Applying X-ray absorption near edge structure, transmission electron microscopy, and laser ablation inductively coupled plasma mass spectrometer analyses, we report a unique mineral assemblage where CFA crystals coat phillipsite in abyssal sediments of the East Mariana Basin and the Philippine Sea.
View Article and Find Full Text PDFDalton Trans
January 2025
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
The development of Pd-based materials with high activity and long-term stability is crucial for their practical applications as an anode catalyst in direct formic acid fuel cells. Herein, we reveal that the catalytic activity of Pd towards formic acid oxidation can be enhanced by incorporation of a series of rare-earth oxides, including ScO, CeO, LaO, and PrO. For example, Pd nanoparticles incorporated with ScO supported on nitrogen-doped reduced graphene oxide (Pd-ScO/N-rGO-, = 1/3, 1/2, 2/3, 1, and 3/2; "" denotes the molar ratio of Pd : Sc) can be obtained using a sodium borohydride reduction method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!