Electron Communication of Bacillus subtilis in Harsh Environments.

iScience

CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R.China. Electronic address:

Published: February 2019

Elucidating the effect of harsh environments on the activities of microorganisms is important in revealing how microbes withstand unfavorable conditions or evolve mechanisms to counteract those effects, many of which involve electron transfer phenomena. Here we show that the non-acidophilic and non-thermophilic Bacillus subtilis is able to maintain activity after being subjected to extreme temperatures (100°C for up to 8 h) and acidic environments (pH = 1.50 for over 2 years). In the process, our results suggest that B. subtilis utilizes an extracellular electron transfer as an electron communication pathway between B. subtilis and the environment that involves the cofactor nicotinamide adenine dinucleotide as an essential participant to maintain viability. Elucidation of the capability of the non-acidophilic and non-thermophilic strain to maintain viability under these extreme conditions could aid in understanding the cell responses to different environments from the perspective of energy conservation pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360405PMC
http://dx.doi.org/10.1016/j.isci.2019.01.020DOI Listing

Publication Analysis

Top Keywords

electron communication
8
bacillus subtilis
8
harsh environments
8
electron transfer
8
non-acidophilic non-thermophilic
8
maintain viability
8
electron
4
communication bacillus
4
subtilis
4
subtilis harsh
4

Similar Publications

A butterfly-shaped acceptor with rigid skeleton and unique assembly enables both efficient organic photovoltaics and high-speed organic photodetectors.

Natl Sci Rev

January 2025

State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China.

It remains challenging to design efficient bifunctional semiconductor materials in organic photovoltaic and photodetector devices. Here, we report a butterfly-shaped molecule, named WD-6, which exhibits low energy disorder and small reorganization energy due to its enhanced molecular rigidity and unique assembly with strong intermolecular interaction. The binary photovoltaic device based on PM6:WD-6 achieved an efficiency of 18.

View Article and Find Full Text PDF

The connectome describes the complete set of synaptic contacts through which neurons communicate. While the architecture of the $\textit{C. elegans}$ connectome has been extensively characterized, much less is known about the organization of causal signaling networks arising from functional interactions between neurons.

View Article and Find Full Text PDF

Citrin Deficiency (CD) is caused by inactivation of SLC25A13, a mitochondrial membrane protein required to move electrons from cytosolic NADH to the mitochondrial matrix in hepatocytes. People with CD do not like sweets. We discovered that SLC25A13 loss causes accumulation of glycerol-3-phosphate (G3P), which activates carbohydrate response element binding protein (ChREBP) to transcribe FGF21, which acts in the brain to restrain intake of sweets and alcohol, and to transcribe key genes of lipogenesis.

View Article and Find Full Text PDF

The large amounts of attention directed towards the commercialization of renewable energy systems have motivated extensive research to develop non-precious-metal-based catalysts for promoting the electrochemical production of H and O from water. Here, we report promising technology, , electrochemical water splitting for OER and HER. This work used a simple hydrothermal method to synthesize a novel CoTe-FeC nanocomposite directly on a stainless-steel substrate.

View Article and Find Full Text PDF

Objective: Successful embryo implantation is contingent upon the intricate interaction between the endometrium and the blastocyst. Recurrent implantation failure (RIF) signifies the clinical challenge of failing pregnancy post-transfer of high-quality embryos, fresh or frozen, in at least three in vitro fertilization (IVF) cycles, often in women under 40 years. Recent studies identify impaired blastocyst maternal tissue communication among recurrent implantation failure causes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!