Mono- or di-substituted imidazole derivatives for inhibition of acetylcholine and butyrylcholine esterases.

Bioorg Chem

Pharmaceutical Chemistry Section, Van Yuzuncu Yil University, 65080 Van, Turkey; SAFF Chemical Reagent R&D Lab. YYU-TEKNOKENT, 65080 Van, Turkey. Electronic address:

Published: May 2019

Mono- or di-substituted imidazole derivatives were synthesized using a one-pot, two-step strategy. All imidazole derivatives were tested for AChE and BChE inhibition and showed nanomolar activity similar to that of the test compound donepezil and higher than that of tacrine. Structure activity relationship studies, docking studies to on X-ray crystal structure of AChE with PDB code 1B41, and adsorption, distribution, metabolism, and excretion (ADME) predictions were performed. The synthesized core skeleton was bound to important regions of the active site of AChE such as the peripheral anionic site (PAS), oxyanion hole (OH), and anionic subsite (AS). Selectivity of the reported test compounds was calculated and enzyme kinetic studies revealed that they behave as competitive inhibitors, while two of the test compounds showed noncompetitive inhibitory behavior. ADME predictions revealed that the synthesized molecules might pass through the blood brain barrier and intestinal epithelial barrier and circulate freely in the blood stream without binding to human serum albumin. While the toxicity of one compound on the WS1 (skin fibroblast) cell line was 1790 µM, its toxicity on the SH-SY5Y (neuroblastoma) cell line was 950 µM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2019.01.044DOI Listing

Publication Analysis

Top Keywords

imidazole derivatives
12
mono- di-substituted
8
di-substituted imidazole
8
adme predictions
8
test compounds
8
derivatives inhibition
4
inhibition acetylcholine
4
acetylcholine butyrylcholine
4
butyrylcholine esterases
4
esterases mono-
4

Similar Publications

Engineered Au@MOFs silk fibroin-based hydrogel phototherapy platform for enhanced wound healing performance.

Int J Biol Macromol

January 2025

School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China. Electronic address:

Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy.

View Article and Find Full Text PDF

Hierarchical Selenium-Doped Nickel-Cobalt Hybrids on Carbon Paper for the Overall Water-Splitting Electrocatalytic System.

ACS Appl Mater Interfaces

January 2025

Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.

Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.

View Article and Find Full Text PDF

Strong coupling FeVO nanoparticles/3D N-doped interconnected porous carbon derived from MOFs by confined adsorption-assembly-pyrolysis for greatly boosting oxygen reduction.

J Colloid Interface Sci

January 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China. Electronic address:

Low-cost and effective electrocatalysts are critical for energy storage and conversion. Herein, iron(III) and vanadium(III) acetylacetonates were first adsorbed and confined in porous zeolitic imidazolate framework-8 (ZIF-8), which further cross-linked together by the methanol-induced-assembly. Following the pyrolysis, the FeVO nanoparticles were efficiently encapsulated within three-dimensional (3D) N-doped interconnected porous carbon, termed FeVO/NIPC.

View Article and Find Full Text PDF

Cyclooxygenase-2 (COX-2), a key enzyme in the inflammatory pathway, is the target for various nonsteroidal anti-inflammatory drugs (NSAIDs) and selective inhibitors known as coxibs. This study focuses on the development of novel imidazole derivatives as COX-2 inhibitors, utilizing a Structure-Activity Relationship (SAR) approach to enhance binding affinity and selectivity. Molecular docking was performed using Autodock Vina, revealing binding energies of -6.

View Article and Find Full Text PDF

Use of Biotin-Labeled Geranyl Pyrophosphate for Analysis of Ykt6 Geranylgeranylation.

Methods Mol Biol

January 2025

Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.

Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!