Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diesel exhaust particles (DEP) are responsible for both respiratory and cardiovascular effects. However many questions are still unravelled and the mechanisms behind the health effects induced by the exposure to ultrafine particles (UFP) need further investigations. Furthermore, different emission sources can lead to diverse biological responses. In this perspective, here we have compared the effects of three DEPs, two standard reference materials (SRM 1650b and 2975) and one DEP directly sampled from a EuroIV vehicle without Diesel Particulate Filter (DPF). For the biological investigations, different in vitro lung models involving both epithelial and vascular endothelial cells, were used. Cell viability, oxidative stress, inflammation, DNA damage and endothelial activation markers were investigated at sub-cytotoxic DEP doses. The data obtained have shown that only DEP EuroIV, which had the major content of polycyclic aromatic hydrocarbons (PAHs) and metals, was able to induce oxidative stress, inflammation and consequent endothelial activation, as demonstrated by the expression of adhesion molecules (ICAM-1 and VCAM-1) and the release of inflammatory markers (IL-8) from endothelial cells. Standard reference materials were not effective under our experimental conditions. These data suggest that oxidative stress, endothelial activation and systemic inflammatory cytokines release are crucial events after DEP exposure and that the source of DEP emission, responsible of the particle chemical fingerprint, may have a key role in the resulting adverse biological outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2019.01.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!