Genetic regulatory networks control ontogeny. For fifty years Boolean networks have served as models of such systems, ranging from ensembles of random Boolean networks as models for generic properties of gene regulation to working dynamical models of a growing number of sub-networks of real cells. At the same time, their statistical mechanics has been thoroughly studied. Here we recapitulate their original motivation in the context of current theoretical and empirical research. We discuss ensembles of random Boolean networks whose dynamical attractors model cell types. A sub-ensemble is the critical ensemble. There is now strong evidence that genetic regulatory networks are dynamically critical, and that evolution is exploring the critical sub-ensemble. The generic properties of this sub-ensemble predict essential features of cell differentiation. In particular, the number of attractors in such networks scales as the DNA content raised to the 0.63 power. Data on the number of cell types as a function of the DNA content per cell shows a scaling relationship of 0.88. Thus, the theory correctly predicts a power law relationship between the number of cell types and the DNA contents per cell, and a comparable slope. We discuss these new scaling values and show prospects for new research lines for Boolean networks as a base model for systems biology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2019.01.036DOI Listing

Publication Analysis

Top Keywords

cell types
16
boolean networks
16
statistical mechanics
8
genetic regulatory
8
regulatory networks
8
ensembles random
8
random boolean
8
generic properties
8
dna content
8
number cell
8

Similar Publications

Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome.

Tissue Barriers

January 2025

Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!