Introduction: This study quantitatively evaluated the type and amount of image artifacts generated by different intracanal materials in birooted teeth scanned at different exposure parameters.

Methods: The sample consisted of 15 birooted premolars. Seven different intracanal material combinations were used in each tooth one at a time: (1) roots without intracanal materials, (2) roots with gutta-percha, (3) a buccal root with gutta-percha and a lingual root with a fiberglass post, (4) a buccal root with gutta-percha and a lingual root with a metal core fiberglass post, (5) buccal and lingual roots with fiberglass posts, (6) buccal and lingual roots with metal core fiberglass posts, and (7) buccal and lingual roots with NiCr metal posts. Cone-beam computed tomographic scans were acquired using a CS 9000 unit (Carestream Dental, Atlanta, GA). An image of each tooth was captured under 5 exposure parameters: 2.5, 4, 6.3, 8, and 12 mA. The voxel size, field of view, and tube voltage were fixed at 0.076 mm, 5 × 3.75 cm, and 75 kV. We assessed each artifact quantitatively using ImageJ's threshold tool (National Institutes of Health, Bethesda, MD) to determine the hypodense and hyperdense artifact areas within 8-bit images extracted from the scans. All analyses were conducted with a 95% confidence level (α <0.05).

Results: The inferential analysis showed that roots filled with metal posts presented the highest amount of hypodense and hyperdense artifacts, whereas fiberglass post in both roots presented fewer artifacts. All materials presented more hypodense than hyperdense artifact formation. Overall, the low-exposure settings presented fewer artifacts and higher values of preserved dental images.

Conclusions: Low-exposure protocols and fiberglass posts presented fewer image artifacts in CBCT scans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2018.11.007DOI Listing

Publication Analysis

Top Keywords

intracanal materials
12
buccal lingual
12
lingual roots
12
cone-beam computed
8
computed tomographic
8
materials birooted
8
birooted teeth
8
buccal root
8
root gutta-percha
8
gutta-percha lingual
8

Similar Publications

Injectable biomaterials, such as thermosensitive chitosan (CH)-based hydrogels, present a highly translational potential in dentistry due to their minimally invasive application, adaptability to irregular defects/shapes, and ability to carry therapeutic drugs. This work explores the incorporation of azithromycin (AZI) into thermosensitive CH hydrogels for use as an intracanal medication in regenerative endodontic procedures (REPs). The morphological and chemical characteristics of the hydrogel were assessed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

Regenerative endodontic therapy (RET) of young permanent teeth with necrotic pulps and apical periodontitis in young people, deciduous tooth pulp may be utilized as a natural, biologic scaffold. Recent developments in stem cell biology and material sciences are beneficial for new treatment methods. Previously traumatized and necrotic young permanent tooth was treated with RET protocol.

View Article and Find Full Text PDF

Objective This in vitro study aimed to assess and compare the antimicrobial effectiveness of ampicillin with ceftriaxone (AC), diclofenac sodium (DS), modified triple antibiotic paste (MTAP), and calcium hydroxide (CH) against in root canal systems. Materials and methods The antimicrobial activity of the medicaments was assessed by determining the minimum inhibitory concentrations (MIC) via the agar well diffusion method. A total of 40 extracted permanent teeth underwent root canal treatment, and was introduced into the canal preparations.

View Article and Find Full Text PDF

Purpose: This in-vitro study was conducted to assess the fracture resistance of resin-bonded ceramic endocrowns with different designs at varying intracoronal depths.

Materials And Methods: Forty-eight (n = 48) extracted mandibular first molar teeth were randomly divided into four groups (n = 12). In the control group, the specimens remained untreated.

View Article and Find Full Text PDF

Perforating Internal Root Resorption Sealed with Single-Cone Technique Using Bioceramic Sealer: A Case Report.

Am J Case Rep

January 2025

Department of Restorative Dentistry, College of Dentistry, Umm Al-Qura University, Mekkah, Saudi Arabia.

BACKGROUND Internal root resorption (IRR) is a rare dental condition characterized by the progressive resorption of dentin within the root canal, often resulting from infection, trauma, or orthodontic treatment. When IRR progresses to perforation, it creates a communication pathway with periodontal tissues, necessitating effective endodontic therapy and perforation repair. Bioceramic sealers, known for their biocompatibility and flowability, have emerged as a promising alternative to traditional materials for filling and sealing the root canal system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!