PD-1 is a negative costimulator of chronic infectious diseases In this study, we investigated the expression of PD-1 and its ligands in the spleen of dogs with visceral leishmaniasis and lymphoproliferative response to soluble antigen, in lymph node cells in the presence or absence of antibodies blocking PD-1 and its ligands. Our results showed expression of PD-1 and its ligands is higher after L. infantum infection and in the spleen of infected dogs, PD-1 blockage was able to restore the antigen-dependent lymphoproliferative response and regulated production of the cytokines IL-4 and IL-10 and NO production. We concluded that L. infantum infection modulates PD-1 and its ligands expression in canine VL and that blockage of PD-1 restores the immune response. Thus, blockage of PD-1 is a target for therapeutic drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cimid.2018.12.002 | DOI Listing |
J Gastric Cancer
January 2025
Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
Combining chemotherapy with immune checkpoint inhibitors (ICIs) that target the programmed death-1 (PD-1) protein has been shown to be a clinically effective first-line treatment for human epidermal growth factor receptor 2 (HER2)-negative and -positive advanced or metastatic gastric cancer (GC). Currently, PD-1 inhibitors combined with chemotherapy are the standard treatment for patients with HER2-negative/positive locally advanced or metastatic GC. Programmed death-ligand 1 (PD-L1) expression, as assessed using immunohistochemistry (IHC), is a crucial biomarker for predicting response to anti-PD-1/PD-L1 agents in various solid tumors, including GC.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Laoshan District, Qingdao, Shandong Province, China.
Purpose: To evaluate the efficacy and safety of induction chemotherapy combined with programmed death protein 1 (PD-1) inhibitor (sintilimab) followed by concurrent chemoradiotherapy (CCRT) plus sintilimab, and subsequent maintenance with sintilimab (IC-ICCRT-IO) for patients with unresectable locally advanced esophageal squamous cell carcinoma (ESCC) in a retrospective study.
Methods: Data from patients with histologically confirmed, locally advanced, inoperable ESCC who received IC-ICCRT-IO were retrospectively analyzed. Treatment effects were evaluated after 2 cycles of induction therapy and after CCRT by contrast-enhanced CT scans and esophagograms, followed by subsequent evaluations every 3 months post-treatment.
Immunol Med
January 2025
Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.
Immune checkpoint molecules, including both co-inhibitory molecules and co-stimulatory molecules, are known to play critical roles in regulating T-cell responses. During the last decades, immunotherapies targeting these molecules (such as programmed cell death 1 (PD-1), and lymphocyte activation gene 3 (LAG-3)) have provided clinical benefits in many cancers. It is becoming apparent that not only T cells, but also B cells have a capacity to express some checkpoint molecules.
View Article and Find Full Text PDFBI 1703880, a novel STimulator of INterferon Genes (STING) agonist, has demonstrated preclinical antitumor activity. As STING activation can upregulate programmed death ligand 1 and human leukocyte antigen in tumor cells, a combination of BI 1703880 and an anti-programmed cell death protein 1-antibody, such as ezabenlimab, may improve efficacy. This first-in-human phase Ia study (NCT05471856) is evaluating BI 1703880 plus ezabenlimab in patients with advanced solid tumors.
View Article and Find Full Text PDFExtracell Vesicles Circ Nucl Acids
November 2024
State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
The article explores celery-derived extracellular vesicles (CDEVs), characterized by high cellular uptake, low immunogenicity, and high stability, as a therapeutic strategy for antitumor nanomedicines. The methods employed in this study include cell experiments such as co-culture, Western Blot, and flow cytometry. experiments were conducted in C57BL/6 tumor-bearing mice subcutaneously injected with Lewis lung carcinoma (LLC) cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!