The performance of photosynthetic biogas upgrading coupled to wastewater treatment was evaluated in an outdoors high rate algal pond (HRAP) interconnected to an absorption column at semi-industrial scale. The influence of biogas flowrate (274, 370 and 459 L h), liquid to biogas ratio (L/G = 1.2, 2.1 and 3.5), type of wastewater (domestic versus centrate) and hydraulic retention time in the HRAP (HRT) on the quality of the biomethane produced was assessed. The highest CO and HS removal efficiencies (REs) were recorded at the largest L/G due to the higher biogas-liquid mass transfer at increasing liquid flowrates. No significant influence of the biogas flowrate on process performance was observed, while the type of wastewater was identified as a key operational parameter. CO and HS-REs of 99% and 100% at a L/G = 3.5 were recorded using centrate. The maximum CH content in the biomethane (90%) was limited by N and O desorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2019.01.110 | DOI Listing |
Bioresour Technol
December 2024
Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore. Electronic address:
The urgency to mitigate greenhouse gas emissions has driven interest in sustainable biogas utilization. This study investigates a 1 L enclosed membrane photobioreactor (MPBR) using a microalgae-methanotroph coculture for biogas capture. Operating with a hydraulic and solid retention time of 7 days and a biogas loading rate of 2.
View Article and Find Full Text PDFBioresour Technol
December 2024
Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical and Environmental Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain. Electronic address:
This study evaluated the influence of nanoparticles in both suspension and solid format on the performance of a microalgal process devoted to photosynthetic biogas purification. The experimental system consisted of an enclosed tubular photobioreactor coupled to a biogas absorption column through a mixing chamber. The high NH concentration in the inlet mineral medium (530 mg N-NH L) and the punctual addition of 115 mL of nanoparticle suspension to the system caused inhibition of the microalgal-bacterial cultivation.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China. Electronic address:
Sustainable lignin-based materials are becoming increasingly valuable in agriculture, where climate change and nutrient deficiencies threaten crop productivity. We developed lignin-derived cryogels using waste biomass to improve soil nutrients, seed germination, water retention, and photosynthetic pigment levels. These cryogels were synthesized with gum Arabic (GA), keratin (K), and N-vinylpyrrolidone at lignin concentrations of 0.
View Article and Find Full Text PDFHeliyon
November 2024
Graduate Program in Biotechnology, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA, 66075-110, Brazil.
Cyanobacteria, a group of photosynthetic bacteria capable of converting sunlight and carbon dioxide into organic compounds, are being explored as a potential source for the production of biofuels. They have the ability to produce various types of biofuels, such as ethanol, hydrogen, and biodiesel. This study is a systematic review of scientific articles published between 2011 and 2022, focusing on the optimization of cyanobacteria cultivation for biofuel production.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
November 2024
Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China.
Oleaginous green microalgae are often mentioned in algae-based biodiesel industry, but most of them belong to specific genus (Chlorella, Scenedesmus, Botryococcus and Desmodesmus). Thus, the microalgal germplasm resources for biodiesel production are limited. Mutagenesis is regarded as an important technology for expanding germplasm resources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!