Cell delivery systems based on micro-hydrogels may facilitate the long-term survival of cells upon transplantation. Micro-hydrogels may effectively support cell proliferation, attachment, and migration in ischemic environments. In this study, we report the fabrication of a gelatin methacrylate (GelMA)-based micro-hydrogel for efficient in vivo delivery of genetically engineered endothelial cells. Micro-hydrogels were initially processed via electrospraying of GelMA and alginate (ALG) mixtures (at different ratios) on to calcium chloride (CaCl) solution. Electrospraying of the GelMA/ALG mixture resulted in the formation of a micro-hydrogel, owing to ALG crosslinking. Secondary crosslinking of GelMA with UV light and ALG hydrogel chelation using sodium citrate solution resulted in GelMA-based micro-hydrogel formation. We observed the angiogenic response of human umbilical vein endothelial cells (HUVECs) in GelMA concentration-dependent manner. The seeding of HUVECs engineered to express human vascular endothelial growth factor on to the GelMA micro-hydrogel and the subsequent transplantation of the micro-hydrogel into a hindlimb ischemia model effectively attenuated the ischemia condition. This facile and simple micro-hydrogel fabrication strategy may serve as a robust method to fabricate efficient cell carriers for various ischemic diseases. STATEMENT OF SIGNIFICANCE: For the therapeutic angiogenesis, it is important to provide the therapeutic cells with a carrier that could stabilize therapeutic cells and facilitate long-term survival of cells. Furthermore, it is also important to administer as many therapeutic cells as possible in a fixed volume. From these cues, we fabricated ECM-based micro-hydrogel produced by the high through-put system. And we intended to facilitate activation of therapeutic cells by coating the therapeutic cells onto the micro-hydrogel. In this manuscript, we fabricated methacrylate gelatin (GelMA) based micro-hydrogels using the electro-spraying method and coated HUVECs engineered to express hVEGF onto the micro-hydrogels. Then, we identified that GelMA concentration-dependent angiogenic response of HUVECs. Furthermore, we demonstrated that the VEGF secreting HUVEC-GelMA micro-hydrogels induced the restoration of blood flow and neovascularization in a hind-limb ischemia mouse model. These findings demonstrate that the high-throughput fabrication of ECM micro-hydrogels could be a novel platform to apply in neovascularization and tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2019.01.057 | DOI Listing |
Curr Rheumatol Rep
December 2024
Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS-937, Boston, MA, 02215, USA.
Purpose Of Review: Kidney injury due to lupus nephritis (LN) is a severe and sometimes life-threatening sequela of systemic lupus erythematosus. Autoimmune injury to podocytes has been increasingly demonstrated to be a key driver of LN-related kidney injury because these cells play key roles in glomerular filtration barrier homeostasis. Irreparable podocyte injury impairs these processes and can lead to proteinuria, which is an indicator of poor prognosis in LN.
View Article and Find Full Text PDFAppl Biochem Biotechnol
December 2024
Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India.
Early childhood caries (ECC), a severe form of dental caries, is exacerbated by the synergistic interaction between Streptococcus mutans and Candida albicans, leading to greater disease severity than their individual effects. This underscores the need for more targeted and potent therapeutic alternatives. Given the promising anti-infective properties of quaternary ammonium surfactants (QAS), this study explores the microbicidal properties of one such QAS, cetyltrimethylammonium chloride (CTAC), against both individual- and dual-species cultures of S.
View Article and Find Full Text PDFCurr Rheumatol Rep
December 2024
Department of Medicine, Division of Rheumatology, Queen's University, Kingston, ON, Canada.
Purpose Of Review: The canonical pathogenesis of spondyloarthritis (SpA) involves inflammation driven by HLA-B27, type 3 immunity, and gut microbial dysregulation. This review based on information presented at the SPARTAN meeting highlights studies on the pathogenesis of SpA from the past year, focusing on emerging mechanisms such as the roles of microbe-derived metabolites, microRNAs (miRNAs) and cytokines in plasma exosomes, specific T cell subsets, and neutrophils.
Recent Findings: The induction of arthritis in a preclinical model through microbiota-driven alterations in tryptophan catabolism provides new insights as to how intestinal dysbiosis may activate disease via the gut-joint axis.
ACS Nano
December 2024
Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518100, P. R. China.
Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway.
View Article and Find Full Text PDFJ Med Chem
December 2024
Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
Rearranged during transfection (RET) kinase is a validated therapeutic target for various cancers characterized by RET alterations. Although two selective RET inhibitors, selpercatinib and pralsetinib, have been approved by the FDA, acquired resistance through solvent-front mutations has been identified rapidly. Developing proteolysis targeting chimera (PROTAC) targeting RET mutations offers a promising strategy to combat drug resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!