Background: Non-small cell lung cancer (NSCLC) accounts for a significant proportion of cancer-related deaths and lacks an effective treatment strategy. NSCLC tissues are generally found in a low oxygen environment. The NDUFA4L2 protein, located in the mitochondria, is encoded by the nucleus genome and is considered a crucial mediator that regulates cell survival. A better understanding of the mechanism of NDUFA4L2 in NSCLC survival in hypoxic environments is essential to design new therapeutic methods.
Methods: Twenty NSCLC and corresponding paired non-tumorous lung tissue samples were collected. NSCLC cell lines were cultured in hypoxic conditions to investigate the mechanism of NDUFA4L2 in NSCLC. The role of NDUFA4L2 was confirmed by using Western blotting, reactive oxygen species measurement, flow cytometry, immunofluorescence analysis, and wound healing and colony formation assays.
Results: The expression of HIF-1α and mitochondrial NDUFA4L2 increased in NSCLC cell lines cultured in hypoxic conditions (1% O ). NDUFA4L2 was drastically overexpressed in human NSCLC tissues and cell lines cultured in hypoxic conditions. HIF-1α regulated the expression of NDUFA4L2. Knockdown of NDUFA4L2 notably increased mitochondrial reactive oxygen species production, which suppressed the viability of NSCLC.
Conclusion: In conclusion, overexpression of NDUFA4L2 is a key factor for maintaining NSCLC growth, suggesting that mitochondrial NDUFA4L2 may be a potential target for the treatment of lung cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449242 | PMC |
http://dx.doi.org/10.1111/1759-7714.12984 | DOI Listing |
Metastasis causes most cancer deaths and reflects transitions from primary tumor escape to seeding and growth at metastatic sites. Epithelial-to-mesenchymal transition (EMT) is important early in metastasis to enable cancer cells to detach from neighboring cells, become migratory, and escape the primary tumor. While different phases of metastasis expose cells to variable nutrient environments and demands, the metabolic requirements and plasticity of each step are uncertain.
View Article and Find Full Text PDFFASEB J
January 2025
Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China.
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) protein is located in the mitochondria and can regulate cell proliferation. Some studies have shown that the high NDUFA4L2 expression is linked with poor prognosis and cancer progression in various patients with cancers. However, the correlation between NDUFA4L2 and pan-cancer is unknown.
View Article and Find Full Text PDFExp Cell Res
November 2024
Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an City, Jiangsu Province, 223300, China. Electronic address:
Background: Cyclic GMP-AMP synthase (cGAS) is widely acknowledged for detecting cytosolic chromatin fragments and triggering innate immune responses through the production of the second messenger cGAMP, which subsequently activates the adaptor protein STING. However, the role of cGAS in regulating metabolic reprogramming independently of STING activation has not yet been explored.
Methods: Gene set enrichment pathway analysis (GSEA) based on TCGA transcriptomics, combined with Seahorse metabolic analysis of CRC cell lines and human normal colonic mucosa cell line FHC, was performed to profile the metabolic features in CRC.
Redox Biol
November 2024
Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany. Electronic address:
Human induced pluripotent stem cells (hiPSCs) are an invaluable tool to study molecular mechanisms on a human background. Culturing stem cells at an oxygen level different from their microenvironmental niche impacts their viability. To understand this mechanistically, dermal skin fibroblasts of 52 probands were reprogrammed into hiPSCs, followed by either hyperoxic (20 % O) or physioxic (5 % O) culture and proteomic profiling.
View Article and Find Full Text PDFOncogene
September 2024
Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
Hypoxia is a common feature of lung squamous cell carcinoma (LUSC), and hypoxia-inducible factor-1 (HIF-1) overexpression is associated with poor clinical outcome in LUSC. NADH dehydrogenase 1 alpha subcomplex subunit 4-like 2 (NDUFA4L2) is a recently identified target of HIF-1, but its roles in LUSC remain unclear. Herein, the expression and regulatory mechanisms of NDUFA4L2 were investigated in LUSC, and the influences on LUSC cell oxidative metabolism and survival of NDUFA4L2 were determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!