AI Article Synopsis

  • This study investigated bone remodeling in adults with X-linked hypophosphatemia (XLH), comparing biochemical markers with healthy controls.
  • Results showed higher levels of bone resorption (CTX) and formation (P1NP), as well as sclerostin, in XLH patients compared to controls, indicating increased osteoblast and osteoclast activity.
  • The findings challenge previous research suggesting low remodeling activity in XLH, prompting further investigation into the role of sclerostin and potential osteocyte dysfunction.

Article Abstract

Aspects of bone remodeling have only been scarcely studied in X-linked hypophosphatemia (XLH). In this cross-sectional controlled study, we assessed biochemical indices of bone remodeling and sclerostin in 27 adult patients (median age 47 [range 24-79] years, 19 women, 8 men) with XLH matched with 81 healthy control subjects (1:3) with respect to age-, sex-, and menopausal status. Markers of bone resorption (carboxyterminal cross-linked telopeptide of type 1 collagen, CTX) and formation (N-terminal propeptide of type 1 procollagen, P1NP) were higher in XLH patients compared to controls (median [IQR] 810 [500-1340] vs 485 [265-715] ng/l and 90 [57-136] vs 49 [39-65] ug/l, respectively, both p < 0.001) as well as sclerostin (0.81 [0.60-1.18] vs 0.54 [0.45-0.69] ng/ml, p < 0.001). Similar differences were found when comparing currently treated (with phosphate and alfacalcidol) (n = 11) and untreated (n = 16) XLH patients with their respective controls. We found no significant associations with treatment status and indices of bone remodeling or sclerostin although sclerostin tended to be increased in untreated versus treated (p = 0.06). In contrast to previous histomorphometric studies suggesting a low remodeling activity in XLH, these biochemical indices suggest high osteoblast and osteoclast activity. Further studies are needed to ascertain if the higher sclerostin level in XLH is related to osteocyte dysfunction or represents a secondary phenomenon.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00223-019-00526-zDOI Listing

Publication Analysis

Top Keywords

bone remodeling
12
x-linked hypophosphatemia
8
cross-sectional controlled
8
controlled study
8
elevated bone
4
remodeling markers
4
markers ctx
4
ctx p1np
4
p1np addition
4
addition sclerostin
4

Similar Publications

Hydroxyapatite (HA) is widely used as a bone graft. However, information on the head-to-head osteoinductivity and in vivo performance of micro- and nanosized natural and synthetic HA is still lacking. Here, we fabricated nanosized bovine HA (nanoBHA) by using a wet ball milling method and compared its in vitro and in vivo performance with microsized BHA, nanosized synthetic HA (nanoHA), and microsized synthetic HA (HA).

View Article and Find Full Text PDF

The Biological Properties of Co-Doped Monetite Are Influenced by Thermal Treatment.

J Biomed Mater Res B Appl Biomater

February 2025

Bioassays and Cellular Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil.

Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses.

View Article and Find Full Text PDF

While polyetherketoneketone is a high-performance thermoplastic polymer, its hydrophobicity and inertness limit bone adhesion. This study aimed to evaluate a novel PEKK/CaSiO/TeO nanocomposite, comparing it to PEKK/15 wt.% CaSiO and PEKK groups.

View Article and Find Full Text PDF

Olfactory ensheathing cells (OECs) and mesenchymal stem cells (MSCs) differentiated towards Schwann-like have plasticity properties. These cells express the Glial fibrillary acidic protein (GFAP), a type of cytoskeletal protein that significantly regulates many cellular functions, including those that promote cellular plasticity needed for regeneration. However, the expression of GFAP isoforms (α, β, and δ) in these cells has not been characterized.

View Article and Find Full Text PDF

The surface topography and chemistry of titanium-aluminum-vanadium (Ti6Al4V) implants play critical roles in the osteoblast differentiation of human bone marrow stromal cells (MSCs) and the creation of an osteogenic microenvironment. To assess the effects of a microscale/nanoscale (MN) topography, this study compared the effects of MN-modified, anodized, and smooth Ti6Al4V surfaces on MSC response, and for the first time, directly contrasted MN-induced osteoblast differentiation with culture on tissue culture polystyrene (TCPS) in osteogenic medium (OM). Surface characterization revealed distinct differences in microroughness, composition, and topography among the Ti6Al4V substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!