Although the impact of donor graft composition on clinical outcomes after hematopoietic stem cell transplantation (HSCT) has been studied, little is known about the role of intragraft γδ TCR repertoire on clinical outcomes following HSCT. Using a high-throughput sequencing platform, we sought to analyze the TCR γ-chain (TRG) repertoire of γδ T cells within donor stem cell grafts and address its potential impact on clinical response in the corresponding patients. A total of 20 peripheral blood stem cell grafts were analyzed, and donors were classified as CMV The respective acute myeloid leukemia recipients were followed for disease relapse and acute graft-versus-host disease (aGvHD) development post-HSCT. In all samples, TRG repertoire showed a reduced diversity and displayed overrepresented clones. This was more prominent in grafts from CMV donors, which presented a more private repertoire, lower diversity, skewed distribution, and reduced usage of the V9-JP pairing. Grafts given to nonrelapse patients presented a more public repertoire and increased presence of long sequence clonotypes. Variable-joining gene segment usage was not associated with aGvHD development, but a higher usage of V2-JP1 pairing and lower usage of V4-J2/V5-J2/V8-JP2 were observed in grafts given to nonrelapse patients. Our work identified five private overrepresented and one public CDR3 sequence (CATWDGPYYKKLF) associated with CMV infection, in addition to 12 highly frequent public sequences present exclusively in grafts given to nonrelapse patients. Our findings show that, despite CMV infection reshaping the TRG repertoire, TRG composition is not associated with aGvHD development, and several public sequences are associated with clinical remission.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1801448DOI Listing

Publication Analysis

Top Keywords

stem cell
16
trg repertoire
12
agvhd development
12
grafts nonrelapse
12
nonrelapse patients
12
γδ tcr
8
hematopoietic stem
8
cell transplantation
8
acute myeloid
8
myeloid leukemia
8

Similar Publications

EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes.

Exp Hematol Oncol

January 2025

Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.

View Article and Find Full Text PDF

Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.

View Article and Find Full Text PDF

The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis.

View Article and Find Full Text PDF

Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!