Ca is a universal second messenger in many signaling pathways in all eukaryotes including plants. Transient changes in [Ca]cyt are rapidly generated upon a diverse range of stimuli such as drought, heat, wounding, and biotic stresses (infection by pathogenic and symbiotic microorganisms), as well as developmental cues. It has been known for a while that [Ca]cyt transient signals play crucial roles to activate plant immunity and recently significant progresses have been made in this research field. However the identity and regulation of ion channels that are involved in defense related Ca signals are still enigmatic. Members of two ligand gated ion channel families, glutamate receptor-like channels (GLRs) and cyclic nucleotide-gated channels (CNGCs) have been implicated in immune responses; nevertheless more precise data to understand their direct involvement in the creation of Ca signals during immune responses is necessary. Furthermore, the study of other ion channel groups is also required to understand the whole picture of the intra- and inter-cellular Ca signalling network. In this review we summarize Ca signals in plant immunity from an ion channel point of view and discuss future challenges in this exciting research field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2018.04.012 | DOI Listing |
BMC Plant Biol
January 2025
The Institute of Plant Sciences and Genetics, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
Background: Plant breeding research heavily relies on wild species, which harbor valuable traits for modern agriculture. This work employed a new introgression population derived from Solanum pennellii (LA5240), a wild tomato native to Peru, composed of 1,900 genotyped backcross inbred lines (BILs_BC2S6) in the tomato inbreds LEA and TOP cultivated genetic backgrounds. This Peruvian accession was found resistant to the most threatening disease of tomatoes today, caused by the tobamovirus tomato brown rugose fruit virus (ToBRFV).
View Article and Find Full Text PDFCell Res
January 2025
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.
Hydrogen peroxide (HO) is a ubiquitous signal regulating many biological processes, including innate immunity, in all eukaryotes. However, it remains largely unknown that how transcription factors directly sense HO in eukaryotes. Here, we report that rice basic/helix-loop-helix transcription factor bHLH25 directly senses HO to confer resistance to multiple diseases caused by fungi or bacteria.
View Article and Find Full Text PDFPlant Genome
March 2025
Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
Winter barley (Hordeum vulgare) production areas in the middle and lower reaches of the Yangtze River are severely threatened by barley yellow mosaic disease, which is caused by Barley yellow mosaic virus and Barley mild mosaic virus. Improving barley disease resistance in breeding programs requires knowledge of genetic loci in germplasm resources. In this study, bulked segregant analysis (BSA) identified a novel major quantitative trait loci (QTL) QRym.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Medical Microbiology, Inonu University, Malatya, Türkiye. Electronic address:
Mycobacterium tuberculosis (M. tuberculosis) bacteria can cause oxidative stress and the production of inflammatory cytokines, creating an environment that enhances tumour formation, progression and metastasis. Epidemiological studies have found a link between lung cancer and tuberculosis (TB), but the cellular mechanism is still unclear.
View Article and Find Full Text PDFInsect Biochem Mol Biol
January 2025
Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA. Electronic address:
Insect prophenoloxidases (proPO) are activated during immune responses by a proPO activating protease (PAP) in the presence of a high molecular weight cofactor assembled from serine protease homologs (SPH) that lack proteolytic activity. PAPs and the SPHs have a similar architecture, with an amino-terminal clip domain and a carboxyl-terminal protease domain. The SPHs belong to CLIPA subfamily of SP-related proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!