The lifetime, coupling, and localization dynamics of electronic states in molecular films near metal electrodes fundamentally determine their propensity to act as precursors or reactants in chemical reactions, crucial for a detailed understanding of charge transport and degradation mechanisms in batteries. In the current study, we investigate the formation dynamics of small polarons and their role as intermediate electronic states in thin films of dimethyl sulfoxide (DMSO) on Cu(111) using time- and angle-resolved two-photon photoemission spectroscopy. Upon photoexcitation, a delocalized DMSO electronic state is initially populated two monolayers from the Cu surface, becoming a small polaron on a 200 fs time scale, consistent with localization due to vibrational dynamics of the DMSO film. The small polaron is a precursor state for an extremely long-lived and weakly coupled multilayer electronic state, with a lifetime of several seconds, thirteen orders of magnitude longer than the small polaron. Although the small polaron in DMSO has a lifetime of 140 fs, its role as a precursor state for long-lived electronic states could make it an important intermediate in multistep battery reactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5047033DOI Listing

Publication Analysis

Top Keywords

small polaron
16
electronic states
12
localization dynamics
8
electronic state
8
precursor state
8
electronic
5
small
5
multistep multiscale
4
multiscale electron
4
electron transfer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!