Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Three series of binary, FeTi (Ti-rich), FeAl and TiAl (Al-rich) alloy samples were produced in an argon arc furnace. An annealing treatment of 72 h at 1000 °C was applied to the samples, giving rise to different equilibrium microstructures depending on chemical composition. Their mechanical properties were studied through the determination of elastic constants that measure the stiffness of the elaborated materials. Young's modulus of the binary alloys was determined using Resonance Ultrasonic Vibration (RUV). The accuracy of this technique was demonstrated. A scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS) and X-ray diffraction (XRD) made it possible to identify intermetallic compounds FeTi and Fe 2 Ti, FeAl and Fe Al 2 , and TiAl and Ti Al 2 in respective systems Fe⁻Ti, Fe⁻Al, and Ti⁻Al. The link between their composition, microstructure, and elastic properties was established.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384648 | PMC |
http://dx.doi.org/10.3390/ma12030433 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!