A robust technique was developed to identify Phytophthora cinnamomi using headspace solid-phase microextraction (HS-SPME) combined with gas chromatography (GC) coupled to a flame ionization detector (FID) for analyzing volatile organic compounds (VOCs). Six fiber types were evaluated and results indicated that the three-phase fiber 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) had the highest extraction efficiency for both polar and nonpolar GC columns. The maximum extraction efficiency (equilibrium absorption) was achieved 16 h after fiber exposure in the HS. Absorbed compounds on the fiber were completely desorbed in the GC injector after 5 min at 250°C. Compared with the nonpolar column, the polar column showed optimum separation of VOCs released from P. cinnamomi. Under the optimized HS-SPME and GC/FID conditions, lower detection limits for the four external standards was found to be between 1.57 to 27.36 ng/liter. Relative standard deviations <9.010% showed that the method is precise and reliable. The method also showed good linearity for the concentration range that was analyzed using four standards, with regression coefficients between 0.989 and 0.995, and the sensitivity of the method was 10 times greater than that of the conventional HS method. In this study, the VOC profiles of six Phytophthora spp. and one Pythium sp. were characterized by the optimized HS-SPME-GC method. The combination of the VOCs creates a unique pattern for each pathogen; the chromatograms of different isolates of P. cinnamomi were the same and the specific VOC pattern of P. cinnamomi remained consistently independent of the growth medium used. The chromatograms and morphological studies showed that P. cinnamomi released specific VOCs at different stages of colony development. Using the optimized HS-SPME GC method, identification of P. cinnamomi from 15 in vivo diseased soil samples was as high as 100%. Results from this study demonstrate the feasibility of this method for identifying P. cinnamomi and the potential use of this method for physiological studies on P. cinnamomi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-12-13-1258-RE | DOI Listing |
Int J Biol Macromol
January 2025
NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; University of Naples Federico II, Department of Biology, Naples, Italy. Electronic address:
Bio-valorization of agri-food wastes lies in their possible conversion into fermented foodstuffs/beverages and/or biodegradable polymers such as bacterial cellulose. In this study, three different kombucha cultures were formulated using agri-food waste materials, citrus fruit residues and used coffee grounds, as alternative carbon and nitrogen sources, respectively. Over 21 days of fermentation, the kinetic profile was followed by monitoring cell number, pH variation, minerals, trace elements and production of bacterial cellulose.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.
View Article and Find Full Text PDFBiomolecules
January 2025
Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.
Olfaction mediated by the antennae is a vital sensory modality for arthropods and could be applied as a tool in pest control. The ectoparasitic mite poses a significant threat to the health of the honey bee worldwide and has garnered global attention. To better understand the chemical ecology of this host-parasite relationship, we collected and characterized the volatile organic compounds (VOCs) from and used electroantennography (EAG) to record the responses of honey bee ( and ) antennae to the different VOCs.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Enology, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China.
To investigate the impact of genetic factors on wine aroma, wines made from 22 clones of five grape varieties ( L.) were used to analyze the volatile compounds by headspace solid phase microextraction gas chromatography mass spectrometer (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). Results showed that 52 and 49 aroma compounds were identified from 22 clones of wines by two technologies, respectively.
View Article and Find Full Text PDFFood Res Int
February 2025
College of Horticulture, Northwest Agriculture and Forest University, Yangling, Shaanxi 712100, China. Electronic address:
Green is no longer the only color used to describe tea leaves. As tea plants with different leaf colors-white, yellow, and purple-yield significant economic benefits, scholars are growing increasingly curious about whether these differently colored leaves possess unique aromatic characteristics. Headspace solid-phase microextraction (HS-SPME) combined with GC-MS was used to analyze the volatile metabolites of buds and leaves from 7 white-leaf tea plants, 9 yellow-leaf tea plants, 4 purple-leaf tea plants, and 7 normal (green) tea plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!