Sclerotinia crown rot, caused by Sclerotinia sclerotiorum and S. minor, is a prevalent disease in pyrethrum fields in Australia. Management involves fungicide applications during the rosette stage of plant development from autumn to early spring in fields approaching first harvest. However, estimates of crop damage and the efficacy of these tactics are poorly understood; therefore, plots were established in 86 pyrethrum fields in Tasmania, Australia during 2010 to 2012 to quantify these and to identify risk factors for disease outbreaks. On average, commercial management for Sclerotinia crown rot reduced disease incidence 43 to 67% compared with nontreated plots. There was a weak but significant relationship between relative increase in flower yield when fungicides were applied and the incidence of crown rot (R = 0.09, P = 0.006), although the mean number of flowers produced was similar regardless of fungicide applications. Flower yield was positively associated with canopy density in spring (S = 0.39, P = 0.001). Moreover, canopy density in spring was linked by both direct and indirect effects to canopy density during autumn and winter which, in turn, were associated with planting date and previous rain events. Modeling canopy density and disease incidence in autumn correctly categorized disease incidence in spring relative to a threshold of 2% in 72% of fields. In a subset of 22 fields monitored over 2 years, canopy density in the autumn following the first harvest had a negative relationship with Sclerotinia crown rot incidence the preceding year (R = 0.23, P = 0.006). On average, however, current commercial management efforts provided only small increases in flower yield in the current season and appear best targeted to fields with well-developed plant canopies and Sclerotinia crown rot present during early autumn.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-06-13-0599-RE | DOI Listing |
Plant Dis
January 2025
Barani agricultural research institute, Chakwal, chakwal, Punjab, Pakistan;
Crown rot impacted olive plants (cv. Koroneiki) in an orchard in Chakwal, Punjab, Pakistan (32° N, 72° E), with a prevalence of 60%. Observable symptoms included leaf chlorosis, defoliation, wilting, and twig dieback in 6-8-year-old plants, ultimately resulting in their demise (Fig.
View Article and Find Full Text PDFPeerJ
January 2025
Plant Health Department, GAP Agricultural Research Institute, Şanlıurfa, Turkey.
This study evaluated the effectiveness of arbuscular mycorrhizal fungi (AMF) species, including (FM), (RI), (CE), and a Mycorrhizal mix (MM) comprising these three species, on pepper plants ( L.) inoculated with two isolates of (48- and 18-) and two isolates of mix (50-F. mixture and 147-F.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
Fusarium crown rot (FCR) poses a major threat to wheat production in the Huanghuai wheat region of China. This study aims to enhance understanding of pathogen populations causing FCR, focusing on their pathogenicity, trichothecene genotypes, and fungicide resistance. During the 2022-2023 growing seasons, we collected 1820 fungal isolates from 233 locations in this region.
View Article and Find Full Text PDFWheat and barley serve as significant nutrient-rich staples that are extensively grown on a global scale, spanning over 219 million hectares. The annual combined global yield is 760.9 million tons, with Kazakhstan contributing 14.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
A major locus Qfcr.cau-1B conferring resistance to Fusarium crown rot was identified and validated. The putative gene underlying this locus was pinpointed via virus-induced gene silencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!