As the mining industry is facing an increasing number of issues related to its fresh water consumption, water-saving strategies are progressively being implemented in the mineral processing plants, often leading to variations in the process water chemistry. However, the impact of water chemistry variations on the process performance is rarely known beforehand, thus creating an obstacle to the implementation of those water-saving strategies. To tackle this problem, the effect the different dissolved species present in the process water have on the processing plant performance must be quantified, and this information must be digitalized in a practical and suitable form to be used in mineral processing simulators. To achieve this goal, a methodology to digitalize the influence of the process water composition on the flotation performance is presented in this paper. Using the flotation of a fluorite ore as case study, the relationship between process water composition and the flotation kinetics of that fluorite ore was determined. This relationship was digitalized in HSC Sim, a mineral processing simulator, turning it into a tool capable of simulating the flotation performance under a variety of process water compositions. Finally, the potential of this new tool to help implementing water-saving strategies on the mine site is discussed, and the challenges that need to be overcome in order to apply this tool at industrial scale are being addressed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2018.11.139DOI Listing

Publication Analysis

Top Keywords

process water
20
water-saving strategies
16
mineral processing
16
mining industry
8
processing simulators
8
variations process
8
water chemistry
8
water composition
8
composition flotation
8
flotation performance
8

Similar Publications

Magnesium (Mg) an essential plant nutrient is widespread deficient in the acidic soils of Nilgiris of Tamil nadu, India. The vegetable yield and quality is especially affected due to deficiency of nutrients like Mg. This study investigates soil characteristics and bacterial diversity in the Nilgiris district of Tamil Nadu, India, with respect to Mg deficiency.

View Article and Find Full Text PDF

The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.

View Article and Find Full Text PDF

Capillary Wave-Assisted Colloidal Assembly.

Langmuir

January 2025

Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.

The self-assembly of nanoparticle colloids into large-area monolayers with long-range order is a grand challenge in nanotechnology. Using acoustic energy, i.e.

View Article and Find Full Text PDF

Cleaning and sterilization are critical Prerequisite Programs in sanitation management based on HACCP. Most food factories clean and sanitize equipment daily after production using detergents containing benzalkonium chloride (BAC). However, in factories that produce oil and fat-rich foods, it has been discovered that microbes can persist on production equipment.

View Article and Find Full Text PDF

Based on the observation that urea, water, and ethyl esters (EE) can form gypsum-like mixtures, this study explored the feasibility of employing water as a solvent for urea in the urea complexation method to enrich n-3 polyunsaturated fatty acids with docosahexaenoic acid (DHA)-containing ethyl esters (DHA- EE) from Crypthecodinium cohnii as the material. Under the conditions of a urea/DHA-EE ratio of 3, a water/DHA-EE ratio of 0.75, a mixing temperature of 65℃, and a cooling temperature of 20℃, a concentrate containing over 90% DHA was achieved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!