Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Utilization of existing clinical data for improving patient outcomes poses a number of challenging and complex problems involving lack of data integration, the absence of standardization across inhomogeneous data sources and computationally-demanding and time-consuming exploration of very large datasets. In this paper, we will present a robust semantic data integration, standardization and dimensionality reduction method to tackle and solve these problems. Our approach enables the integration of clinical data from diverse sources by resolving canonical inconsistencies and semantic heterogeneity as required by the National Library of Medicine's Unified Medical Language System (UMLS) to produce standardized medical data. Through a combined application of rule-based semantic networks and machine learning, our approach enables a large reduction in dimensionality of the data and thus allows for fast and efficient application of data mining techniques to large clinical datasets. An example application of the techniques developed in our study is presented for the prediction of bariatric surgery outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2019.01.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!