Landslides are major hazards for human activities often causing great damage to human lives and infrastructure. Therefore, the main aim of the present study is to evaluate and compare three machine learning algorithms (MLAs) including Naïve Bayes (NB), radial basis function (RBF) Classifier, and RBF Network for landslide susceptibility mapping (LSM) at Longhai area in China. A total of 14 landslide conditioning factors were obtained from various data sources, then the frequency ratio (FR) and support vector machine (SVM) methods were used for the correlation and selection the most important factors for modelling process, respectively. Subsequently, the resulting three models were validated and compared using some statistical metrics including area under the receiver operating characteristics (AUROC) curve, and Friedman and Wilcoxon signed-rank tests The results indicated that the RBF Classifier model had the highest goodness-of-fit and performance based on the training and validation datasets. The results concluded that the RBF Classifier model outperformed and outclassed (AUROC = 0.881), the NB (AUROC = 0.872) and the RBF Network (AUROC = 0.854) models. The obtained results pointed out that the RBF Classifier model is a promising method for spatial prediction of landslide over the world.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.01.329 | DOI Listing |
Cureus
December 2024
Anna and Peter Brojde Lung Cancer Center, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, CAN.
Background A minority of patients receiving stereotactic body radiation therapy (SBRT) for non-small cell lung cancer (NSCLC) are not good responders. Radiomic features can be used to generate predictive algorithms and biomarkers that can determine treatment outcomes and stratify patients to their therapeutic options. This study investigated and attempted to validate the radiomic and clinical features obtained from early-stage and oligometastatic NSCLC patients who underwent SBRT, to predict local response.
View Article and Find Full Text PDFSensors (Basel)
December 2024
LAPLACE Laboratory-UMR5213, National Polytechnic Institute of Toulouse, 31077 Toulouse, France.
This paper introduces a novel methodology for evaluating communication performance in rotating electric machines using Received Signal Strength Indication (RSSI) measurements coupled with artificial intelligence. The proposed approach focuses on assessing the quality of wireless signals in the complex, dynamic environment inside these machines, where factors like reflections, metallic surfaces, and rotational movements can significantly impact communication. RSSI is used as a key parameter to monitor real-time signal behavior, enabling a detailed analysis of communication reliability.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Radiology, Beijing Anzhen Hospital, Beijing, China.
Objectives: To evaluate the function of kidneys with renal artery stenosis using multiparametric magnetic resonance imaging, assess the diagnostic efficacy of multiparametric magnetic resonance imaging for single kidney dysfunction.
Materials And Methods: Renal multiparametric magnetic resonance imaging was performed on 62 patients with RAS using the Philips Ingenia CX 3.0 T MRI machine.
BMC Neurol
December 2024
Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, 02115, USA.
Parkinson's disease (PD) is a neurodegenerative disease affecting millions of people around the world. Conventional PD detection algorithms are generally based on first and second-generation artificial neural network (ANN) models which consume high energy and have complex architecture. Considering these limitations, a time-varying synaptic efficacy function based leaky-integrate and fire neuron model, called SEFRON is used for the detection of PD.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
Our ability to measure time is vital for daily life, technology use, and even mental health; however, separating pure time perception from other mental processes (like emotions) is a research challenge requiring precise tests to isolate and understand brain activity solely related to time estimation. To address this challenge, we designed an experiment utilizing hypnosis alongside electroencephalography (EEG) to assess differences in time estimation, namely underestimation and overestimation. Hypnotic induction is designed to reduce awareness and meta-awareness, facilitating a detachment from the immediate environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!