Bioaccumulation behaviour of pharmaceuticals and personal care products in a constructed wetland.

Chemosphere

Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, T-Lab Building, 117411, Singapore. Electronic address:

Published: May 2019

Pharmaceuticals and personal care products (PPCPs) is an important class of environmental contaminants and has gained increasing concerns in recent years. The bioaccumulation behaviour of PPCPs in wetland plants is not well understood. In the present study we report results of a field investigation to assess the bioaccumulation behaviour and phytoremediation efficacy of several PPCPs in Lorong Halus Wetland, a large-scale constructed wetland system in Singapore, constructed for the treatment of landfill leachate. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) based methods were employed to quantify concentrations of target PPCPs in leachate and flowing water, as well as wetland plants (roots and shoots), at different locations in the wetland system. The results indicated the presence of several PPCPs in leachate, water and vegetation in the wetland. Bioconcentration factors (BCFs) in the dominant wetland plant, Typha angustifolia, ranged between approximately 60 and 2000. Results indicated that Cattail Typha angustifolia was capable of remediating PPCPs to various extends, with bioconcentration factors ranging up to 2000. The suitability for phytoremediation depends on the physical chemical properties such as hydrophilicity and lipophilicity of these PPCPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.01.116DOI Listing

Publication Analysis

Top Keywords

bioaccumulation behaviour
12
pharmaceuticals personal
8
personal care
8
care products
8
wetland
8
constructed wetland
8
wetland plants
8
wetland system
8
ppcps leachate
8
bioconcentration factors
8

Similar Publications

The goal of this study was to compare the bioaccumulation of the PCB mixture Aroclor 1254 in zebrafish to cardiac and neurologic outcomes. The establishment of effect concentrations (ECs) for cardiac and neurotoxic effects of PCBs in early life stage fish is challenging due to a lack of measured PCB concentrations in test media (e.g.

View Article and Find Full Text PDF

Mitochondrial mechanism of florfenicol-induced nonalcoholic fatty liver disease in zebrafish using multi-omics technology.

J Hazard Mater

December 2024

Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Florfenicol (FF), a third-generation chloramphenicol antibiotic widely used in food-producing animals, has become a "pseudopersistent" environmental contaminant, raising concerns about its potential ecological and human health impacts. However, its bioaccumulation behavior and hepatotoxic mechanisms remain poorly understood. This study aims to address these gaps with a 28-day exposure experiment in adult zebrafish at 0.

View Article and Find Full Text PDF

Microplastics aggravate the adverse effects of methylmercury than inorganic mercury on zebrafish (Danio rerio).

Environ Pollut

December 2024

Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, And Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China. Electronic address:

The potential health risks of microplastics (MPs) and their combined exposure with heavy metals such as mercury (Hg) in aquatic environment are increasingly concerned recently. In this work, zebrafish embryos were exposed to different levels of polystyrene microplastics (PS-MPs, ∼0.1 μm) coupled with Hg(II) or/and MeHg at 20 μg/L, to investigate the tissue biodistribution and accumulation of PS-MPs and Hg species, and their interaction, as well as embryo toxicity, oxidative stress and metabolic profiles.

View Article and Find Full Text PDF

Occurrence, bioaccumulation and trophodynamics of per- and polyfluoroalkyl substances (PFAS) in terrestrial and marine ecosystems of Svalbard, Arctic.

Water Res

December 2024

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.

Per- and polyfluoroalkyl substances (PFAS) enter the Arctic through long-range transport and local pollution. To date, little is known about their behavior in plant and benthic marine food webs in remote Arctic. In this study, we analyzed the environmental distribution and nutrient transfer of 20 PFAS in soil, sediment, plant and benthic biota samples collected between 2014 and 2016 in Svalbard, Arctic.

View Article and Find Full Text PDF

Enantioselective disruption of circadian rhythm behavior in goldfish (Carassius auratus) induced by chiral fungicide triadimefon at environmentally-relevant concentration.

J Hazard Mater

December 2024

Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China. Electronic address:

The pollution of triadimefon (TDF) fungicides significantly hinders the "One Health" frame achievement. However, the enantioselective effects of chiral TDF on the circadian rhythm of fish remained unclear. Herein, TDF enantiomers (R(-)-TDF and S(+)-TDF) and racemic Rac-TDF were selected to investigate their enantioselective effects and mechanisms on circadian rhythm of goldfish (Carassius auratus) at an environmentally-relevant concentration (100 µg L⁻¹).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!