Vocal fold scarring is the fibrotic manifestation of a variety of voice disorders, and is difficult to treat. Tissue engineering therapies provide a potential strategy to regenerate the native tissue microenvironment in order to restore vocal fold functionality. However, major challenges remain in capturing the complexity of the native tissue and sustaining regeneration. We hypothesized that hydrogels with tunable viscoelastic properties that present relevant biological cues to cells might be better suited as therapeutics. Herein, we characterized the response of human vocal fold fibroblasts to four different biomimetic hydrogels: thiolated hyaluronan (HA) crosslinked with poly(ethylene glycol) diacrylate (PEGDA), HA-PEGDA with type I collagen (HA-Col I), HA-PEGDA with type III collagen (HA-Col III) and HA-PEGDA with type I and III collagen (HA-Col I-Col III). Collagen incorporation allowed for interpenetrating fibrils of collagen within the non-fibrillar HA network, which increased the mechanical properties of the hydrogels. The addition of collagen fibrils also reduced hyaluronidase degradation of HA and hydrogel swelling ratio. Fibroblasts encapsulated in the HA-Col gels adopted a spindle shaped fibroblastic morphology by day 7 and exhibited extensive cytoskeletal networks by day 21, suggesting that the incorporation of collagen was essential for cell adhesion and spreading. Cells remained viable and synthesized new DNA throughout 21 days of culture. Gene expression levels significantly differed between the cells encapsulated in the different hydrogels. Relative fold changes in gene expression of MMP1, COL1A1, fibronectin and decorin suggest higher degrees of remodeling in HA-Col I-Col III gels in comparison to HA-Col I or HA-Col III hydrogels, suggesting that the former may better serve as a natural biomimetic hydrogel for tissue engineering applications. STATEMENT OF SIGNIFICANCE: Voice disorders affect about 1/3rd of the US population and significantly reduce quality of life. Patients with vocal fold fibrosis have few treatment options. Tissue engineering therapies provide a potential strategy to regenerate the native tissue microenvironment in order to restore vocal fold functionality. Various studies have used collagen or thiolated hyaluronan (HA) with gelatin as potential tissue engineering therapies. However, there is room for improvement in providing cells with more relevant biological cues that mimic the native tissue microenvironment and sustain regeneration. The present study introduces the use of type I collagen and type III collagen along with thiolated HA as a natural biomimetic hydrogel for vocal fold tissue engineering applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6549515 | PMC |
http://dx.doi.org/10.1016/j.actbio.2019.01.058 | DOI Listing |
Updates Surg
January 2025
1St Propaedeutic Surgical Department, University Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki (AUTH), 5462, Thessaloniki, Greece.
The unprecedented technical and technological evolution in thyroid surgery has labelled it as an extremely safe and efficient procedure, and indeed "typifies perhaps better than any other operation the supreme triumph of the surgeon's art."-William Halsted, 1852-1922. Surgeon's experience reflected by annual case load is the most important denominator in thyroid surgery.
View Article and Find Full Text PDFJ Speech Lang Hear Res
January 2025
Center for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital, Boston.
Purpose: The Daily Phonotrauma Index (DPI) can quantify pathophysiological mechanisms associated with daily voice use in individuals with phonotraumatic vocal hyperfunction (PVH). Since DPI was developed based on weeklong ambulatory voice monitoring, this study investigated if DPI can achieve comparable performance using (a) short laboratory speech tasks and (b) fewer than 7 days of ambulatory data.
Method: An ambulatory voice monitoring system recorded the vocal function/behavior of 134 females with PVH and vocally healthy matched controls in two different conditions.
J Voice
January 2025
Department of Rehabilitation Sciences, Faculty of Education, East China Normal University, Shanghai, China.
The assessment of vocal function plays an important role in the diagnosis of voice disorders. With the continuous development of voice medicine in China, the evaluation, diagnosis, and treatment of voice disorders are gradually professionalized and standardized. Experts of the Subspecialty Group of Voice, Society of Otorhinolaryngology Head and Neck Surgery, Chinese Medical Association; Subspecialty Group of Laryngopharyngology, Editorial Board of Chinese Journal of Otorhinolaryngology Head and Neck Surgery reached the expert consensus through clinical research, literature search, and quality evaluation, as well as two meetings and two rounds of questionnaire voting.
View Article and Find Full Text PDFJ Voice
January 2025
Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria; Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria.
J Voice
January 2025
Department of Otolaryngology-Head and Neck Surgery, UCSF Voice and Swallowing Center, UCSF School of Medicine, San Francisco, CA. Electronic address:
Background: Laryngeal respiratory dystonia (LRD) is diagnosed based on clinical presentation, patient history, and physical examination. Key indicators include dyspnea, desynchronized breathing patterns, and laryngoscopic findings that reveal vocal fold adduction during inspiration. Treatment for LRD remains controversial and often yields limited effectiveness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!