NLRP3 inflammasome in NMDA-induced retinal excitotoxicity.

Exp Eye Res

Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA. Electronic address:

Published: April 2019

N-methyl-D-aspartate (NMDA)-induced excitotoxicity is an acute form of experimental retinal injury as a result of overactivation of glutamate receptors. NLRP3 (nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain containing-3) inflammasome, one of the most studied sensors of innate immunity, has been reported to play a critical role in retinal neurodegeneration with controversial implications regarding neuroprotection and cell death. Thus far, it has not been elucidated whether NMDA-mediated excitotoxicity can trigger NLRP3 inflammasome in vivo. Moreover, it is unknown if NLRP3 is beneficial or detrimental to NMDA-mediated retinal cell death. Here, we employed a murine model of NMDA-induced retinal excitotoxicity by administering 100 nmoles of NMDA intravitreally, which resulted in massive TUNEL (TdT-dUTP terminal nick-end labelling) cell death in all retinal layers and especially in retinal ganglion cells (RGCs) 24 h post injection. NMDA insult in the retina potentiates macrophage/microglia cell infiltration, primes the NLRP3 inflammasome in a transcription-dependent manner and induces the expression of interleukin-1β (IL-1β). However, despite NLRP3 inflammasome upregulation, systemic deletion of Nlrp3 or Casp1 (caspase-1) did not significantly alter the NMDA-induced, excitotoxicity-mediated TUNEL retinal cell death at 24 h (acute phase). Similarly, the deletion of the two aforementioned genes did not alter the survival of the Brn3a (brain-specific homeobox/POU domain protein 3A) RGCs in a significant way at 3- or 7-days post injection (long-term phase). Our results indicate that NMDA-mediated retinal excitotoxicity induces immune cell recruitment and NLRP3 inflammasome activity even though inflammasome-mediated neuroinflammation is not a leading contributing factor to cell death in this type of retinal injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443491PMC
http://dx.doi.org/10.1016/j.exer.2019.01.018DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
20
cell death
20
retinal excitotoxicity
12
retinal
10
nlrp3
8
nmda-induced retinal
8
retinal injury
8
nmda-mediated retinal
8
retinal cell
8
post injection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!