True truffles (Tuber sp.) that establish ectomycorrhizal symbiosis (ECM) with trees in the Mediterranean and temporal regions have species specific abilities to assimilate soil born elements. Suitable habitats are usually inhabited by few truffle species, while distinguishing their symbiotic potentials appeared very difficult. Two species that commonly inhabit riparian forests in Serbia are the most prized one, Tuber magnatum Pico (Piedmont white truffle) and not so highly valued Tuber brumale Vitt. In order to assess potential differences between their assimilation and accumulation abilities, the differences between contents of elements that may be the subjects of the symbiotic trade between the host plant and fungi were evaluated in accumulation target (ascocarps) and their source (the soil). Essential (K, Na, Ca, Mg, Fe, P, S, and Zn) and essential trace elements (Co, Cr, Cu, Mn, and Se) in truffles and soil samples were determined by means of inductively coupled plasma with optical emission spectrometry (ICP-OES). Their concentrations (mg/kg) in ascocarps were in the range from 1.364±0.591 (Cr) to 10760.862±16.058 (K), while in soil ranged from 23.035±0.010 (Cr) to 20809.300±122.934 (Fe). Element accumulation potential (bioaccumulation factor) was calculated in the system truffle/soil. The statistical approaches were used for establishing the differences, while the possible differentiation between symbiotic potentials of two mycelia in the defined soil conditions was discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.201800693 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!